We report on processing crystalline silicon with ultrashort laser pulses. Careful analysis of the nonlinear interaction process allows to inscribe waveguides in a longitudinal writing geometry. The origin of the waveguiding structures is due to a disturbed crystal structure with a cross section closely matching the focal size of the inscribing laser beam. Thermal annealing studies confirm that the strain from these defects and dislocations is responsible for the refractive index change. Improved control of nonlinear energy deposition paves the way to realize the transversal writing regime. Other applications like welding or localized amorphization will be highlighted as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.