Acceleration of particles in photonic nanostructures fabricated using semiconductor manufacturing techniques and driven by ultrafast solid state lasers is a new and promising approach to developing future generations of compact particle accelerators. Substantial progress has been made in this area in recent years, fueled by a growing international collaboration of universities, national laboratories, and companies. Performance of these micro-accelerator devices is ultimately limited by laser-induced material breakdown limits, which can be substantially higher for optically driven dielectrics than for radio-frequency metallic cavities traditionally used in modern particle accelerators, allowing for 1 to 2 order of magnitude increase in achievable accelerating fields. The lasers required for this approach are commercially available with moderate (micro-Joule class) pulse energies and repetition rates in the MHz regime. We summarize recent experimental progress and potential near-term applications and offshoot technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.