Lamb waves at ultrasonic frequencies travel with little attenuation in thin elastic plates, and we demonstrate their use in pulse-echo behavior to monitor plate integrity. We envision using a single PZT wafer-type transducer to generate waves and to receive reflections from distant flaw or boundary locations. However, Lamb waves generally have multiple modes, each of them highly dispersive, and in consequence pulse dispersion can become pronounced and can make difficult or impossible the interpretation of pulse-echo responses. We show that selective generation of the S0 wave will overcome those difficulties; therefore, selection of transducer dimensions and pulse characteristics to achieve selective generation should be considered mandatory for most intended applications. We first review the work of others identifying a basic relationship between transducer dimension and excitation frequency for selective generation of the S0 wave. We then summarize our extensive experimental studies of wafer-type transducers with particular attention to S0 and A0 mode behavior, both in transmission and reception. We next report our two-dimensional finite element simulation of the same problem performed in FEMLAB, requiring transient simulation of the coupled electromechanical problem. We simulate the piezoelectric response of the wafer-type transducer coupled to the elastic plate, both as transmitter and receiver, as well as the development of Lamb waves within the source region and their subsequent propagation along the plate. Simulations illustrate the development and separation of the S0 and A0 modes and reproduce the expected group velocities and dispersion behavior. We show good agreement between our experiments and our simulations regarding S0 mode behavior, and we summarize the results to guide a designer in choosing transducer dimensions. In particular, good selectivity between the S0 and A0 mode generation can be obtained with appropriate choice of transducer size and center frequency. We show the results of experiments on an aluminum plate in which excitation of a single PZT wafer-type transducer at 6.5 V (peak-to-peak) produces reflected signals of ample strength (tens of mV) from distant boundaries and from partial thickness flaws.
MEMS ultrasonic transducers for flaw detection have heretofore been built as capacitive diaphragm-type devices. A diaphragm forms a moveable electrode, placed at a short gap from a stationary electrode, and diaphragm movement has been detected by capacitance change. Although several research teams have successfully demonstrated that technology, the detection of capacitance change is adversely affected by stray and parasitic capacitances, limiting the sensitivity of such transducers and typically requiring relatively large diaphragm areas. We describe the design and fabrication of what to our knowledge is the first CMOS-MEMS ultrasonic phased array transducer using piezoresistive strain sensing. Piezoresistors have been patterned within the diaphragms, and diaphragm movement creates bending strain which is detected by a bridge circuit, for which conductor losses will be less significant. The prospective advantage of such piezoresistive transducers is that sufficient sensitivity may be achieved with very small diaphragms. We compare transducer response under fluid-coupled ultrasonic excitation and report the experimental gauge factor for the piezoresistors. We also discuss the phased array performance of the transducer in sensing the direction of an incoming wave.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.