A Grazing Incidence Metal Mirror (GIMM) is a chief candidate for beam delivery for Inertial Fusion Energy (IFE). The goal for GIMM survival is greater than 3×108 laser pulses with 5 J/cm2 laser fluence normal to the incident beam. Laser-induced damage to metal mirrors is primarily a thermomechanical process. Long-term exposure leads to microstructural evolution analogous to fatigue. We have performed laser-induced damage experiments on high damage threshold aluminum mirrors using commercial KrF excimer (248 nm) lasers. We have studied mirror response to standard, 25 ns long-pulses as well as to IFE prototypic, 5 ns short-pulses achieved using a Pockels Cell. Short-pulse damage fluence was found to be better than predicted using simple thermal diffusion scaling from long-pulse results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.