Free-Space Optical Communication (FSOC) links between Earth-based Optical Ground Stations (OGSs) and satellites offer immense potential to securely and efficiently exchange vast amounts of information with worldwide coverage. However, atmospheric turbulence inhibits this potential by distorting laser beams, as they propagate through the atmosphere. Adaptive Optics (AO) systems are typically employed at the OGS to correct for these adverse effects and can increase the efficiency of laser light being coupled into an optical fibre for a downlink laser beam. Concurrently, the same AO system can be used to increase the coupling of laser light into an orbiting satellite by pre-distorting the uplink laser beam. In such a scenario, the downlink laser beam is used to measure the distortions that are applied by the atmosphere, and the conjugate of these distortions can then be applied to the uplink laser beam. The atmosphere then corrects the pre-distorted beam, resulting in a flat wavefront at the top of the atmosphere, as well as stable and efficient coupling of light into the satellite. This work showcases the successful experimental ground-to-satellite links in the spring of 2023 between DLR’s recently commissioned OGS and TESAT’s laser communications terminal (LCT-135)—i.e., part of the Technology Demonstration Payload No. 1 (TDP-1) on the geostationary satellite, Alphasat. Pre-distortion was successfully applied via an AO system testbed within the OGS, which resulted in extremely power efficient bi-directional tracking links with Alphasat. The findings of this work show that the application of pre-distortion AO not only improves the coupling of laser light at the satellite, but also reduces the scintillation experienced at the satellite, thus improving the robustness of the link.
Optical free-space data downlinks from LEO satellites benefit considerably from reduced effort on the space segment, when a dedicated pointing mechanism and active tracking of a ground beacon can be avoided. Instead, the attitude of the satellite is dynamically determined from its star cameras and other sensors. Initial calibration for this technique requires recording of the spatial and temporal beam distribution on the Earth’s surface. We describe the measurement of the beam intensity on ground by the power detectors of three ground stations in parallel, exemplarily for one specific downlink. From this data we derive the instantaneous center of gravity of the beam spot, and its dynamic movement during the downlink. By comparison with the satellite’s own recorded attitude data and its error, the dynamic offset to be corrected on the satellite can be calculated, resulting in optimized pointing-control for future operational open-loop downlinks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.