PurposeThere are a number of algorithms for smooth l0-norm (SL0) approximation. In most of the cases, sparsity level of the reconstructed signal is controlled by using a decreasing sequence of the modulation parameter values. However, predefined decreasing sequences of the modulation parameter values cannot produce optimal sparsity or best reconstruction performance, because the best choice of the parameter values is often data-dependent and dynamically changes in each iteration.ApproachWe propose an adaptive compressed sensing magnetic resonance image reconstruction using the SL0 approximation method. The SL0 approach typically involves one-step gradient descent of the SL0 approximating function parameterized with a modulation parameter, followed by a projection step onto the feasible solution set. Since the best choice of the parameter values is often data-dependent and dynamically changes in each iteration, it is preferable to adaptively control the rate of decrease of the parameter values. In order to achieve this, we solve two subproblems in an alternating manner. One is a sparse regularization-based subproblem, which is solved with a precomputed value of the parameter, and the second subproblem is the estimation of the parameter itself using a root finding technique.ResultsThe advantage of this approach in terms of speed and accuracy is illustrated using a compressed sensing magnetic resonance image reconstruction problem and compared with constant scale factor continuation based SL0-norm and adaptive continuation based l1-norm minimization approaches. The proposed adaptive estimation is found to be at least twofold faster than automated parameter estimation based iterative shrinkage-thresholding algorithm in terms of CPU time, on an average improvement of reconstruction performance 15% in terms of normalized mean squared error.ConclusionsAn adaptive continuation-based SL0 algorithm is presented, with a potential application to compressed sensing (CS)-based MR image reconstruction. It is a data-dependent adaptive continuation method and eliminates the problem of searching for appropriate constant scale factor values to be used in the CS reconstruction of different types of MRI data.
In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.