This paper discusses the self-assembled growth of In(Ga)As/GaAs quantum dots by metal-organic chemical vapor deposition and their application to diode lasers and integrated opto-electronic devices. After an extensive study of the growth parameters high densities (3-4×1010cm-2) of defect free quantum dots have been achieved and ground state lasing demonstrated for diode lasers with 5 stacked layers of quantum dots in the active region. This presentation will review the important growth parameters and the lasing characteristics of quantum dot lasers. Results for selective area epitaxy of quantum dots using SiO2 patterning will also be presented. Selective area epitaxy has been used to form quantum dots with different wavelength/bandgap in different regions of a GaAs substrate and has led to the integration of a quantum dot laser and waveguide.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.