This paper presents a deep learning-based concrete crack detection technique using hybrid images. The hybrid images combining vision and infrared (IR) thermography images are able to improve crack detectability while minimizing false alarms. Large scale concrete-made infrastructures such as bridge, dam, and etc. can be effectively inspected by spatially scanning the hybrid imaging system including vision camera, IR camera and continuous-wave line laser. However, the decision-making for the crack identification often requires experts’ intervention. As a target concrete structure gets larger, automated decision-making becomes more necessary in the practical point of view. The proposed technique is able to achieve automated crack identification by modifying a well-trained convolutional neural network using a set of crack images as a training image set, while retaining the advantages of hybrid images. The proposed technique is experimentally validated using a lab-scale concrete specimen developed with various-size cracks. The test results reveal that macro- and micro-cracks are automatically detected with minimizing false-alarms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.