In this paper, we present a method for reducing the computation time of Automated Target Recognition (ATR) algorithms through the utilization of the parallel computation on Graphics Processing Units (GPUs). A selected multistage ATR algorithm is refounded to encourage efficient execution on the GPU. Such refounding includes parallel reimplementations of optical correlation, Feature Extraction, Classification and Correlation using NVIDIA's CUDA programming model. This method is shown to significantly reduce computation time of the selected ATR algorithms allowing the potential for further complexity and real-time applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.