The Line Emission Mapper (LEM) is a Probe mission concept developed in response to NASA’s Astrophysics Probe Explorer (APEX) Announcement of Opportunity. LEM has a single science instrument composed of a large-area, wide-field X-ray optic and a microcalorimeter X-ray imaging spectrometer in the focal plane. LEM is optimized to observe low-surface-brightness diffuse X-ray emission over a 30′ equivalent diameter field of view with 1.3 and 2.5 eV spectral resolution in the 0.2−2.0 keV band. Our primary scientific objective is to map the thermal, kinetic, and elemental properties of the diffuse gas in the extended X-ray halos of galaxies, the outskirts of galaxy clusters, the filamentary structures between these clusters, the Milky Way star-formation regions, the Galactic halo, and supernova remnants in the Milky Way and Local Group. The combination of a wide-field optic with 18′′ angular resolution end-to-end and a microcalorimeter array with 1.3 eV spectral resolution in a 5′ × 5′ inner array (2.5 eV outside of that) offers unprecedented sensitivity to extended low-surface-brightness X-ray emission. This allows us to study feedback processes, gas dynamics, and metal enrichment over seven orders of magnitude in spatial scales, from parsecs to tens of megaparsecs. LEM will spend approximately 11% of its five-year prime science mission performing an All-Sky Survey, the first all-sky X-ray survey at high spectral resolution. The remainder of the five-year science mission will be divided between directed science (30%) and competed General Observer science (70%). LEM and the NewAthena/XIFU are highly complementary, with LEM’s optimization for soft X-rays, large FOV, 1.3 eV spectral resolution, and large grasp balancing the NewAthena/X-IFU’s broadband sensitivity, large effective area, and unprecedented spectral resolving power at 6 keV. In this presentation, we will provide an overview of the mission architecture, the directed science driving the mission design, and the broad scope these capabilities offer to the entire astrophysics community.
In the 2020 Astrophysics Decadal Survey, the National Academies identified cosmic feedback and structure formation as a key question that should drive research in the upcoming decade. In response to this recommendation, NASA released a call for X-ray and IR probe-class missions, with a $1B cost cap. The line emission mapper (LEM) is a mission concept designed in response to this call. LEM is a single-instrument X-ray telescope that consists of a Wolter–Schwarzschild type I X-ray optic with a 4 m focal length, coupled with an X-ray microcalorimeter with a 30′ field of view (FoV), 15″ angular resolution, and 2.5 eV energy resolution [full-width half maximum (FWHM)], with a 1.3 eV FWHM energy resolution central subarray. The high throughput X-ray mirror combined with the large FoV and excellent energy resolution allows for efficient mapping of extended emission-line dominated astrophysical objects from megaparsecs to sub-pc scales to study cosmic ecosystems and unveil the physical drivers of galaxy formation.
The line emission mapper x-ray microcalorimeter instrument requires a 4 K cryogenic system to precool a continuous adiabatic demagnetization refrigerator enabling high-resolution x-ray spectroscopy. The cryogenic system described in this work provides the required structural and thermal environments using mature cooling and structural technologies. The system is comprised of a dewar design based on heritage manufacturing processes and an efficient four-stage pulse tube cryocooler with supporting control electronics.
The line emission mapper (LEM) is a probe-class mission concept that is designed to detect x-ray emission lines from hot ionized gas (T > 106 K) that will enable us to test galaxy evolution theories. It will permit us to study the effects of stellar and black-hole feedback and flows of baryonic matter into and out of galaxies. The key to being able to study the hot gases that are otherwise invisible to current imaging x-ray spectrometers is that the energy resolution is sufficient to use cosmological redshift to separate extragalactic source lines from foreground Milky Way emission. LEM incorporates a large-format microcalorimeter array instrument called the LEM microcalorimeter spectrometer (LMS) with a light-weight x-ray optic with 10” half power diameter angular resolution. The LMS microcalorimeter array has pixels with 15″ pixel pitch over a 33′ field of view (FOV) optimized for the 0.3 to 2 keV energy band. The central 7′ region of the array has an energy resolution of 1.3 eV at 1 keV and the rest of the FOV has 2.5 eV energy resolution at 1 keV. The array will be read out with state-of-the-art time-division multiplexing. We present an overview of the LMS instrument, including details of the entire detection chain, the focal plane assembly, as well as the cooling system and overall mechanical and thermal design. For each of the key technologies, we discuss the current technology readiness level and the plan to advance them to be ready for flight. We also describe the current system design and our estimate for the mass, power, and data rate of the instrument. The design details presented concentrate primarily on the unique aspects of the LMS design compared with prior missions and confirm that the type of microcalorimeter instrument needed for LEM is not only feasible but also technically mature.
The Near Infrared Camera (NIRCam) for the James Webb Space Telescope (JWST) has undergone Pathfinder
component testing and evaluation. This paper presents the opto-mechanical test results. An overview of the optomechanical
system requirements is provided, followed by a discussion of the opto-mechanical system design and
assembly process. Tolerances in the opto-mechanical system as they relate to system level alignment are also presented.
Mechanical analysis related to vibration and thermal behavior of the design is shown. Finally, the overall performance
of the opto-mechanical system is discussed as it relates to instrument optical performance.
The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) is one of the four
science instruments to be installed into the Integrated Science Instrument Module (ISIM) on JWST. NIRCam's
requirements include operation at 37 Kelvin to produce high resolution images in two wave bands encompassing the
range from 0.6 microns to 5 microns. In addition, NIRCam is to be used as a metrology instrument during the JWST
observatory commissioning on orbit, during the precise alignment of the observatory's multiple-segment primary
mirror. This paper will provide an update to the NIRCam Thermal subsystem design for stable operation at 37 Kelvin.
This paper describes the design of the compact, lightweight, and athermalized Pick Off Mirror and Mount. Structural and thermal analysis as well as actual prototype testing are also described.
The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) is one of the four science instruments to be installed into the Integrated Science Instrument Module (ISIM) on JWST. NIRCam's requirements include operation at 37 Kelvin to produce high resolution images in two wave bands encompassing the range from 0.6 microns to 5 microns. In addition, NIRCam is to be used as a metrology instrument during the JWST observatory commissioning on orbit, during the precise alignment of the observatory's multiple-segment primary mirror. This paper will describe the NIRCam Thermal subsystem design for stable operation at 37 Kelvin.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.