Publisher's Note: This paper, originally published on 18 July 2024, was replaced with a corrected/revised version on 30 August 2024. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
BlueMUSE is a blue-optimised, medium spectral resolution, panoramic integral eld spectrograph under development for the Very Large Telescope (VLT). With an optimised transmission down to 350 nm, spectral resolution of R~3500 on average across the wavelength range, and a large FoV (1 arcmin2), BlueMUSE will open up a new range of galactic and extragalactic science cases facilitated by its specific capabilities. The BlueMUSE consortium includes 9 institutes located in 7 countries and is led by the Centre de Recherche Astrophysique de Lyon (CRAL). The BlueMUSE project development is currently in Phase A, with an expected rst light at the VLT in 2031. We introduce here the Top Level Requirements (TLRs) derived from the main science cases, and then present an overview of the BlueMUSE system and its subsystems ful lling these TLRs. We speci cally emphasize the tradeo s that are made and the key distinctions compared to the MUSE instrument, upon which the system architecture is built.
The Many Instrument Fiber System (MANIFEST) is a facility fiber system for the Giant Magellan Telescope (GMT). MANIFEST will be capable of feeding current and upcoming GMT instruments light from the telescopes full 20-arcmin field of view. The MANIFEST concept uses “Starbugs” – self-motile fiber heads deployed on a glass plate. MANIFEST will enhance the capabilities of different optical and near-infrared spectrographs at the GMT by feeding fibres and providing simultaneous observations. We have so far developed 15 science cases for MANIFEST which are listed under five broad science themes. Many science cases from galactic surveys, nearby galaxy surveys, intergalactic medium tomography, and spatially resolved studies of distant universe are of interest. These science cases drive the instrument requirements, modes of observations, and operation conditions for MANIFEST. Defined from the science cases, MANIFEST offers nine different modes of observations including high multiplexing, multiple and high sensitivity integral-field spectroscopy, polarimetry, and near-infrared spectroscopy. We discuss in this paper the latest developments of GMT/MANIFEST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.