UVC LEDs are of fundamental importance for many applications, including sterilization and disinfection, thanks to their high efficiency and low environmental impact. However, several physical processes still limit the lifetime and reliability of these devices. We present recent case studies in the field of UVC LED reliability. Initially, we review the performance/efficiency of state-of-the-art commercial devices, and discuss the issues related to LED self-heating, and the related electro-optical transient behavior. Then, we discuss the impact of defects on LED degradation, based on combined deep-level transient spectroscopy (DLTS) and deep-level optical spectroscopy (DLOS) measurements, and Technology Computer-Aided Design (TCAD) simulations. We show that, during prolonged operation, UVC LEDs can show considerable changes in the electrical characteristics: a) an increase in the sub-turn on leakage, that can be reproduced by TCAD as due to an increase in trap-assisted tunneling, related to deep traps located in the interlayer between the last barrier and the EBL; b) an increase in the turn-on voltage, that is explained by the degradation of the metal/p-GaN contact, due to a decrease in the active magnesium concentration. Electro-optical measurements reveal that a stronger degradation is detected at low measuring current levels, confirming an important role of defect-mediated recombination. Remarkably, degradation kinetics do not follow an exponential trend, but can be fitted by using the Hill’s formula. A higher Mg doping in the EBL mitigates the degradation rate. Results are interpreted by considering that degradation is due to the de-hydrogenation of point defects, which increases the density of non-radiative recombination centers.
This presentation will provide an overview of the state-of-the-art in the development of AlGaN-based far-UVC-LED technologies. We will explore origins for the observed decline in the external quantum efficiency (EQE) with decreasing emission wavelength and present different approaches to improve the RRE, CIE, and LEE of UV light emitters. We will also discuss design aspects for far-UVC irradiation systems and provide an outlook of future prospects of far-UVC-LED device technology as well as the potential for a wider use of far-UVC sources in applications like room air disinfection.
Electrochemical etching of III-nitride-materials is a fast-developing research field. This method is used to selectively porosify or completely etch such materials and thereby opens up a new design space for both photonic and electronic devices. Here we will focus on complete lateral electrochemical etching for substrate removal to realise thin-film vertical-cavity surface-emitting lasers (VCSELs) and light emitting diodes (LEDs). Key challenges that will be addressed are how to achieve etched surfaces as smooth as the as-grown material and how to protect fully processed and highly doped device structures such as tunnel junctions, during substrate removal.
Light emitting diodes in the deep ultraviolet spectral range (DUV-LEDs) are of great interest for monitoring gases, pollutants in water as well as the in-vivo inactivation of multi-drug-resistant bacteria. This paper reviews advances in development of AlGaN-based DUV-LEDs, including the realization of low defect density AlN on sapphire. DUV-LEDs near 230 nm with output powers of more than 3 mW will be demonstrated and the root causes for the efficiency drop at shorter UV wavelength will be explored, including changes in the polarization of light emission, the role of point defects as well as carrier injection in AlGaN MQWs.
Recent advances in optimizing the efficiency and lifetime of far-UVC LEDs with emission wavelengths below 240 nm are presented. The design of the semiconductor heterostructure is considered as well as the chip layout. Cross-comparisons are used to draw general conclusions about degradation mechanisms in UV LEDs and to identify development strategies to minimize them. Furthermore, it is discussed which chip packaging is particularly suitable for a combination of far-UVC LEDs with spectral filters. Finally, far-UVC irradiation systems for skin-friendly irradiation of the human body are presented and their performance is illustrated with selected medical and biological data.
The market of Ultraviolet (UV) Light Emitting Diodes (LEDs) is expected to expand substantially in the coming years, thanks to the disinfection properties of the UV light; however, a detailed study on the reliability-limiting processes is a fundamental step, for an effective deployment of this technology. We investigated the degradation mechanisms of AlGaN-based UV Single Quantum Well (SQW) LEDs, with a nominal emission wavelength of 265 nm, an area of 0.1 mm2 and a nominal current density of 100 A·cm-2. By means of constant current stress test and Capacitance Deep Level Transient Spectroscopy (C-DLTS) we studied the main electrical, optical, spectral and capacitance characteristics of the devices, in order to understand the dominant causes of degradation. For aged devices the electrical characterization shows increased subthreshold leakage currents, due to the increase in Trap Assisted Tunneling (TAT) components, as well as an increase in drive voltage, which is ascribed to contact degradation or a decrease in injection efficiency. The optical output power showed a decrease especially at low current levels, which has been ascribed to an increase in non-radiative recombination and suggests the generation of defects in the LED active region. C-DLTS measurements showed in unaged devices the presence of two defects in the structure, both ascribed to magnesium (Mg), located at 475 meV and 150 meV from the respective band. Moreover, we detected the increase in concentration of a third defect during the stress test with an activation energy of 700 meV, that acts as a point defect, and could be ascribed to gallium vacancies or nitrogen antisites.
Far-UVC LEDs are interesting for applications such as skin-tolerant inactivation of multiresistant pathogens and gas sensing. We present the development of 233 nm AlGaN-based far-UVC LEDs with an emission power of 3 mW at 200 mA and L50 lifetime of more than 1000 h, after burn-in. Additionally, the design of a far-UVC LED-based irradiation system, with a spectral filter which supresses emission >240 nm, to study the inactivation of bacteria and skin compatibility of the radiation will be presented. The system can be used to homogeneously irradiate a target area of 70 mm diameter with a mean irradiance of 0.4 mW/cm².
We will give an overview of state-of-the-art results and challenges to achieve high-performing III-nitride vertical-cavity surface-emitting lasers (VCSELs), with a particular focus on the requirements to push the emission wavelength into the ultraviolet (UV). Our method to simultaneously achieve high-reflectivity mirrors and good cavity length control by electrochemical etching enabled the world’s first UV-B VCSEL. The use of dielectric mirrors yielded lasers with a very temperature-stable emission wavelength thanks to the negative thermo-optic coefficient of the mirrors. We have used the same etch methodology to also lift-off fully processed LEDs from their growth substrate to improve the light extraction efficiency.
We will give an overview of different concepts to increase the light extraction efficiency (LEE) of ultraviolet (UV) light-emitting diodes (LEDs) with a focus on thin-film flip-chip (TFFC) devices. Optical simulations show that a TFFC design can greatly improve the LEE with a transparent p-side, reflective contacts, and optimized surface roughening. We will demonstrate UVB-emitting TFFC LEDs based on our fabrication platform for AlGaN thin films with high aluminum content. The fabrication is compatible with a standard LED process and uses substrate removal based on selective electrochemical etching as the key enabling technology.
Driven by applications like monitoring of combustion engines, toxic gases, nitrates in water, as well as the inactivation of multi-drug-resistant germs, the development of AlGaN-based light emitting diodes in the deep ultraviolet spectral range (DUV-LEDs) has markedly intensified. This paper will provide a review of recent advances in development of DUV-LEDs, including the realization of low defect density AlGaN heterostructures on sapphire substrates. The performance characteristics of DUV LEDs emitting in the wavelength range between 260 nm and 217 nm will be discussed and milli-Watt power LEDs near 233 nm will be demonstrated.
We here demonstrate thin-film flip-chip (TFFC) ultraviolet-B light-emitting diodes (LEDs) fabricated by a standard LED process and followed by a substrate removal based on selective electrochemical etching of an n-doped multilayered Al0.11Ga0.89N/Al0.37Ga0.63N sacrificial layer. The integration of the LEDs to a Si carrier using thermocompression bonding allowed roughening of the N-polar AlGaN side of the TFFC LEDs using TMAH-etching, which increased the light extraction efficiency by approximately 45% without negatively affecting the I-V-characteristics. This resulted in an optical output power of 0.47 mW at 10 mA for an LED with a p-contact area of 0.03 mm2.
Here we investigate the influence of the p- and n-oxide-aperture radii in all-semiconductor GaAs-based verticalcavity surface-emitting lasers (VCSELs), designed for 980 nm, on the modulation time constant (τ). Our analysis shows that the minimum value of τ is obtained if the oxide layers on both sides of the junction have identical depths. The simulations of the number of oxide layers on both p- and n-type sides reveal that double p- and n-oxidations are the most effective in the reduction of the modulation time constant as compared to single oxide layers.
Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.
Light emitting diodes (LEDs) in the UVB (280 nm – 315 nm) spectral range are of particular interest for applications such as plant growth lighting or phototherapy. In fact, LEDs offer numerous advantages compared to conventional ultraviolet light sources such as a tunable emission wavelength, a small form factor, and a minimal environmental impact. State-of-the-art devices utilize p-GaN and low aluminum mole fraction p-AlGaN layers to enable good ohmic contacts and low series resistances. However, these layers are also not transparent to UVB light thus limiting the light extraction efficiency (LEE). The exploitation of UV-transparent p-AlGaN layers together with high reflective metal contacts may significantly increase the LEE. In this paper, the output power of LEDs emitting at 310 nm with a UV-transparent and absorbing Mg-doped AlGaN superlattice is compared. A three-fold increase of the output power was observed for LEDs with UV-transparent p-AlGaN layers. To investigate these findings, LEDs with low reflective Ni/Au and high reflective Al contacts are fabricated and characterized. Together with ray tracing simulations and detailed measurements of the metal reflectivities, we were able to determine the LEE and the internal quantum efficiency (IQE). According to on-wafer measurements, the external quantum efficiency (EQE) increases from 0.3% for an absorbing p-Al0.2Ga0.8N/Al0.4Ga0.6N-superlattice with Ni/Au contacts to 0.9% for a UV-transparent p-Al0.4Ga0.6N/Al0.6Ga0.4N-superlattice with Al contacts. This 3× enhancement of the EQE can be partially ascribed to an improved LEE (from 4.5% to 7.5%) in combination with a 1.8× increase of the IQE when using a p-Al0.4Ga0.6N/Al0.6Ga0.4N-superlattice instead of a p-Al0.2Ga0.8N/Al0.4Ga0.6N-superlattice.
We demonstrate picosecond pulse generation in the blue-violet wavelength region by passive intra-cavity mode-locking in GaN-based ridge waveguide laser diodes with monolithically integrated absorbers. For cavity lengths of 1.2 and 0.6 mm we observe repetition frequencies of 40 and 90 GHz, and pulse lengths of 7 and 4 ps, respectively. The results are explained by an extremely short, tunneling dominated carrier life time in the saturable absorber at high negative bias. The fast depletion of the charge carriers in the absorber is investigated by bias-dependent life-time measurements in the absorber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.