The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) aims to improve constraints on the dark energy equation of state through measurements of large-scale structure at high redshift (0.8 < z < 2.5), while serving as a state-of-the-art fast radio burst detector. Bright galactic foregrounds contaminate the 400–800 MHz HIRAX frequency band, so meeting the science goals will require precise instrument characterization. In this paper we describe characterization of the HIRAX antenna, focusing on measurements of the antenna beam and antenna noise temperature. Beam measurements of the current HIRAX antenna design were performed in an anechoic chamber and compared to simulations. We report measurement techniques and results, which find a broad and symmetric antenna beam for ν<650MHz, and elevated cross-polarization levels and beam asymmetries for ν <700MHz. Noise temperature measurements of the HIRAX feeds were performed in a custom apparatus built at Yale. In this system, identical loads, one cryogenic and the other at room temperature, are used to take a differential (Y-factor) measurement from which the noise of the system is inferred. Several measurement sets have been conducted using the system, involving CHIME feeds as well as four of the HIRAX active feeds. These measurements give the first noise temperature measurements of the HIRAX feed, revealing a ∼60K noise temperature (relative to 30K target) with 40K peak-to-peak frequency-dependent features, and provide the first demonstration of feed repeatability. Both findings inform current and future feed designs.
The Hydrogen Intensity and Real-time Analysis Experiment (HIRAX) is a radio interferometer array currently in development, with an initial 256-element array to be deployed at the South African Radio Astronomy Observatory Square Kilometer Array site in South Africa. Each of the 6 m, f / 0.23 dishes will be instrumented with dual-polarization feeds operating over a frequency range of 400 to 800 MHz. Through intensity mapping of the 21 cm emission line of neutral hydrogen, HIRAX will provide a cosmological survey of the distribution of large-scale structure over the redshift range of 0.775 < z < 2.55 over ∼15,000 square degrees of the southern sky. The statistical power of such a survey is sufficient to produce ∼7 % constraints on the dark energy equation of state parameter when combined with measurements from the Planck satellite. Additionally, HIRAX will provide a highly competitive platform for radio transient and HI absorber science while enabling a multitude of cross-correlation studies. We describe the science goals of the experiment, overview of the design and status of the subcomponents of the telescope system, and describe the expected performance of the initial 256-element array as well as the planned future expansion to the final, 1024-element array.
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.