Multiplex Coherent Anti-Stokes Raman Scattering (M-CARS) is an innovative nonlinear spectroscopic approach designed to characterize the vibrational modes of molecular structures. Coherent Raman scattering has been used for the characterization of biomedical targets for about 20 years and the multiplex aspect was introduced 10 years ago thanks to the use of a supercontinuum laser system. For each of these systems, the combination of a pump and a probe wave, driven by an external delay line, is however required to produce the vibrations. In the present work, we propose a new M-CARS system, free of the external delay line. A few-mode microstructured fiber enables merging both wave-packets (pump and supercontinuum) within a single waveguide. We showcase the capability of this system in generating hyperspectral images of biochemically active compounds. Curcumin I, the principal yellow compound isolated from Curcuma longa (Turmeric), is distinguishable by its multiple functional groups that display a nonlinear spectroscopic behavior.
Since its first demonstration, spatial beam self-cleaning has been targeted as a breakthrough nonlinear effect, for its potential of extending to multimode fibers different technologies based on single-mode fibers, such as fiber lasers and endoscopes. To date, most of the theoretical descriptions of beam self-cleaning are based on scalar models. Whereas, in experiments the analysis of the polarization state of self-cleaned beams is often neglected. Here, we fill this gap between theory and experiments, by demonstrating that a self-cleaned beam eventually loses its degree of polarization, as long as linearly polarized light of enough power is injected at the fiber input. Our results are cast in the framework of a thermodynamic description of nonlinear beam propagation in multimode fibers, providing the first experimental proof of the applicability of scalar theories for the description of the spatial beam self-cleaning effect.
We unveil the existence of stable high-order dissipative spatiotemporal stationary solitons (i.e., light bullets) and breathers in the externally driven multimode nonlinear systems with a three-dimensional confining parabolic potential. Specifically, we focus on the externally driven multimode Kerr cavities. We show that the potential is responsible for stabilization of these three-dimensional states, and that it dictates their rich internal structure.
We demonstrate the feasibility of multiphoton fluorescence imaging with high spatial resolution using commercially available single-core 50/125 multimode graded-index fiber. Light propagating forward inside the endoscopic fiber undergoes a non-reciprocal propagation exhibiting a robust nonlinear spatial self-cleaning process. Whereas fluorescence from nonlinear interactions with biological samples linearly propagates backward along the same fiber. The scanner head, located at the distal end of the endoscope and suited for multimode fibers, is based on a ceramic tube where the fiber end follows a spiral course to explore the sample. No knowledge of the fiber transfer matrix is required.
The self-channeling of extremely high power laser beams permits the ignition of plasma filaments in dielectrics, such as air and glasses. If no constraints are imposed by the geometry of the material, the plasma appears as a straight bright line. Here, we show that plasma filaments may be ignited in the vicinity of the interface between two materials in optical fibers, i.e., either the core-cladding or the cladding-air interface. In the latter case, helical plasma filaments lead to the emission of rainbow spiral beams. In perspective, our results may pave the way to a novel approach for micro-structuring optical fibers, and for generating light beams with orbital angular momentum.
All-optical poling was demonstrated for the first time in 1986 in single mode fibers: such nonlinear optical process enabled the introduction of a second-order susceptibility (χ(2)) in a doped silica fiber. By simply using an intense laser source, alloptical poling, later theoretically described by Stolen and coworkers, permitted the generation of a second harmonic (SH) signal in an otherwise centrosymmetric doped material. More recently, similar experiments have been carried out by exploiting complex beam propagation in multimode fibers. In this work we reveal, for the first time to our knowledge, the 3D spatial distribution of a χ(2) nonlinearity written in a graded-index (GRIN) multimode (MM) fiber. In particular, the presence of a doubly-periodic distribution of χ(2) is unveiled by means of multiphoton microscopy. The shortest period (tens of micrometers) is due to the beating between the fundamental and the SH beams, and it is responsible for their quasi-phase matching (QPM). Whereas the longest period (hundreds of micrometers) is associated with the periodic evolution, or self-imaging, of the power density of the MM beam along the GRIN MM fiber. The complex modal beating, leading to spatial self-cleaning of the fundamental beam, is thus printed inside the fiber core, and revealed by our measurements. We considered two fibers of similar composition and opto-geometric parameters, and we compared the evolution of the optical poling process with time. Despite the rather similar fiber characteristics, we observed a striking difference in the poling efficiency between the two fibers. Such observation led us to point out the importance of considering the complete fiber fabrication process (both the preform elaboration and the drawing steps) on the final structure and microstructure of optical fibers.
We study multiphoton absorption-induced damages to standard silica multimode optical fibers, induced by means of femtosecond infrared laser beams. During the damaging process, the dynamics of beam propagation turns out to non-trivially evolve over a time scale of several hours. Such a long term evolution produces an irreversible drop of the optical transmission, which is accompanied by a drastic change of the output supercontinuum spectrum. A microscopic analysis of the damages was carried out by means of both optical microscopy and absorption-contrast computed X-ray tomography. This has permitted us to obtain information about the sign of the refractive index variation which is induced by the optical breakdown. Our results will find application in a wide array of emerging technologies employing high-power fiber optic beams, such as fiber lasers and micromachining.
We analyzed the nonlinear dynamics of pulsed beam self-cleaning in nonlinear tapered Ytterbium doped and Erbium-Ytterbium codoped graded-index multimode optical fibers, with quasi-uniform doping distribution in the core cross-section. By increasing the net gain when operating in active configuration we observed that the output spatial intensity distribution changed from a speckled into a high-quality and bell-shaped beam. By launching pulses in the normal dispersion regime of the taper, from the wider into the smaller core diameter, we generated a supercontinuum emission between 520 nm and 2600 nm. When the laser pulses were launched into the small core side of the tapered fiber or in the Erbium-Ytterbium fiber, self-cleaning was obtained without any self-phase modulation-induced spectral broadening or frequency conversion.
Beam self-imaging of ultrashort pulses in nonlinear graded-index (GRIN) multimode optical fibers is of interest for many applications, including spatiotemporal mode-locking in fiber lasers. We obtained a new analytical description for the nonlinear evolution of a laser beam of arbitrary transverse shape propagating in a GRIN fiber. The longitudinal beam evolution could be directly visualized by means of femtosecond laser pulses, propagating in the anomalous or in the normal dispersion regime, leading to light scattering out of the fiber core via the emission of blue photo-luminescence. As the critical power for self-focusing is approached and even surpassed, a host of previously undisclosed nonlinear effects is revealed, including strong multiphoton absorption by oxygen-deficiency center defects and Germanium inclusions, splitting and shifting of the self-imaging period, filamentation, and conical emission of the guided light bullets. We discovered that nonlinear loss has a profound influence on the process of high-order spatiotemporal soliton fission. The beam energy carried by the fiber is clamped to a fixed value, and nonlinear bullet attractors with suppressed Raman frequency shift and fixed temporal duration are generated, leading to highly efficient frequency conversion of the input near-infrared femtosecond pulses into mid-infrared multimode solitons.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.