Magnetic topological insulators are a new class of materials that combine magnetism with topology, which leads to exotic quantum phenomena such as the quantum anomalous Hall effect and the axion insulator phase. Of the magnetic topological insulators, those with MnBi2Te4 magnetic septuple layers self-assembled in a non-magnetic topological Bi2Te3 host material are of particular interest and have recently been extensively studied. Here, we present an overview of our recent advances in understanding the influence of several factors such as the ordering of Mn impurities, omnipresent magnetic disorder, and the position of the Fermi level on ferromagnetism and magnetotransport in such systems. In particular, the consequences of these effects for observation or lack of the quantized anomalous Hall effect are discussed. Both theoretical and experimental research on these issues is crucial for gaining controllable access to the quantum anomalous Hall effect and other spintronic phenomena, which have potential applications in low-power consumption electronic devices, data storage, and quantum computing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.