SignificanceTo enable non-destructive longitudinal assessment of drug agents in intact tumor tissue without the use of disruptive probes, we have designed a label-free method to quantify the health of individual tumor cells in excised tumor tissue using multiphoton fluorescence lifetime imaging microscopy (MP-FLIM).AimUsing murine tumor fragments which preserve the native tumor microenvironment, we seek to demonstrate signals generated by the intrinsically fluorescent metabolic co-factors nicotinamide adenine dinucleotide phosphate [NAD(P)H] and flavin adenine dinucleotide (FAD) correlate with irreversible cascades leading to cell death.ApproachWe use MP-FLIM of NAD(P)H and FAD on tissues and confirm viability using standard apoptosis and live/dead (Caspase 3/7 and propidium iodide, respectively) assays.ResultsThrough a statistical approach, reproducible shifts in FLIM data, determined through phasor analysis, are shown to correlate with loss of cell viability. With this, we demonstrate that cell death achieved through either apoptosis/necrosis or necroptosis can be discriminated. In addition, specific responses to common chemotherapeutic treatment inducing cell death were detected.ConclusionsThese data demonstrate that MP-FLIM can detect and quantify cell viability without the use of potentially toxic dyes, thus enabling longitudinal multi-day studies assessing the effects of therapeutic agents on tumor fragments.
Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.