Additive manufacture (AM) involves creating a part layer by layer and is a rapidly evolving manufacturing process. It has multiple strengths that apply to space-based optics, such as the ability to consolidate multiple parts into one, reducing the number of interfaces. The process also allows for greater mass reduction, making parts more cost-effective to launch, achieved by optimising the shape for intended use or creating intricate geometries like lattices. However, previous studies have highlighted issues associated with the AM process. For example, when trying to achieve high-precision optical surfaces on AM parts, the latticing on the underside of mirrors can provide insufficient support during machining, resulting in the quilting effect. This paper builds on previous work and explores such challenges further. This will be implemented by investigating ways to apply AM to a deployable mirror from a CubeSat project called A-DOT. The reflective surface has a spherical radius of curvature of 682 mm and approximate external dimensions of 106 x 83 mm. The aim is to produce two mirrors that will take full advantage of AM design benefits and account for the challenges in printing and machining a near-net shape. The designs will have reduced mass by using selected internal lattice designs and topologyoptimised connection points, resulting in two mirrors with mass reduction targets of 50% and 70%. Once printed in aluminium using laser powder bed fusion, the reflective surface will be created using single point diamond turning. Finally, an evaluation of the dimensional accuracy will be conducted, using interferometry, to quantify the performance of the reflective surface.
Lightweight optical manufacture is no longer confined to the conventional subtractive (mill and drill), formative (casting and forging) and fabricative (bonding and fixing) manufacturing methods. Additive manufacturing (AM; 3D printing), creating a part layer-by-layer, provides new opportunities to reduce mass and combine multiple parts into one structure. Frequently, modern astronomical telescopes and instruments, ground- and space-based, are limited in mass and volume, and are complex to assemble, which are limitations that can benefit from AM. However, there are challenges to overcome before AM is considered a conventional method of manufacture, for example, upskilling engineers, increasing the technology readiness level via AM case studies, and understanding the AM build process to deliver the required material properties. This paper describes current progress within a four-year research programme that has the goal to explore these challenges towards creating a strategy for AM adoption within astronomical hardware. Working with early-career engineers, case studies have been undertaken which focus on lightweight AM aluminium mirror manufacture and optical mountings. In parallel, the aluminium AM build parameters have been investigated to understand which combination of parameters results in AM parts with consistent material properties and low defects. Metrology results from two AM case studies will be summarised: the optical characteristics of a lightweighted aluminium mirror intended for in-orbit deployment from a nanosat; and the AM build quality of wire arc additive manufacture for use in an optomechanical housing. Finally, an analysis of how surface roughness from AM mirror samples and build parameters are linked will be discussed.
KEYWORDS: Prototyping, Design and modelling, Single point diamond turning, Optical surfaces, Porosity, Simulations, Mirrors, Mirror surfaces, 3D printing, Additive manufacturing
Additive manufacturing (AM; 3D Printing) is a process that fabricates objects layer-by-layer, unlocking previously unachievable geometrical freedom in design and manufacture. Its adoption for the manufacture of optical components for nanosats is challenging due to limited understanding of its inherent porosity and outgassing properties; however, AM has plenty of potential for lightweight space-based mirror structures as it enables the use of lattice structures and topology optimisation. AM is particularly relevant to nanosat deployable optics (DO) instrumentation, where a segmented mirror needs to be packed within a limited volume and mass budget. This paper describes the design, analysis, manufacture and metrology of AM mirror petal prototypes for a 6U nanosat DO payload. The objective of the prototypes was to reduce the mass and the part count relative to the conventional design. From the available 33 volumetric lattices including graph, triply periodic minimal surface and stochastic lattices within the AM design software used, two were downselected by using finite element analysis and manufacturability experiments. Prototypes were designed using these lattices, and the geometric and interface requirements of the conventional petal. These were printed, using laser powder bed fusion, in the aluminium alloy AlSi10Mg and post-processed using single point diamond turning. The internal (porosity) and external geometrical properties of the manufactured prototypes were measured using X-ray computed tomography and the optical properties of the reflective surface evaluated using interferometry. By utilising AM, a mass reduction of 44 % and the consolidation of nine parts into one was achieved.
Fabricating mirrors using additive manufacturing (AM; 3D printing) is a promising yet under-researched production route. There are several issues that need to be better understood before AM can be fully adopted to fabricate mirror substrates. A significant obstacle to AM adoption is the presence of porosity and the influence that has on the resultant optical proprieties. Several batches of high-silicon aluminium (AlSi10Mg) samples were created to investigate the relationships laser parameters, laser paths and build orientations have with the porosity. The results showed that eliminating defects relies on a complex interaction of the process parameters and material properties, with the residual heating from the laser proving to be a significant factor. In addition, the use of a hot isostatic press is investigated and some full prototypes of the Cassegrain CubeSat were produced.
Additive Manufacturing (AM; 3D printing) for mirror fabrication allows for intricate designs that can combine lightweight structures and integrated mounting. Conventional lightweight structures utilise cubic or prismatic unit cells, which do not provide uniform support at the edge of curved mirrors. We present a new circular lattice based upon cylindrical coordinates and how this lattice has been incorporated within an 80 mm diameter mirror intended for use in a 3U CubeSat telescope. Several design iterations are explored, which include prototype mirrors produced in a titanium alloy and a finite element analysis of the one of the design iterations.
KEYWORDS: Mirrors, Polishing, Surface roughness, Additive manufacturing, Finite element methods, Space mirrors, Aluminum, Single point diamond turning, Lightweight mirrors, Error analysis, 3D printing
Additive manufacturing (AM), more commonly known as 3D printing, is a commercially established technology for rapid prototyping and fabrication of bespoke intricate parts. To date, research quality mirror prototypes are being trialled using additive manufacturing, where a high quality reflective surface is created in a post-processing step. One advantage of additive manufacturing for mirror fabrication is the ease to lightweight the structure: the design is no longer confined by traditional machining (mill, drill and lathe) and optimised/innovative structures can be used. The end applications of lightweight AM mirrors are broad; the motivation behind this research is low mass mirrors for space-based astronomical or Earth Observation imaging. An example of a potential application could be within nano-satellites, where volume and mass limits are critical. The research presented in this paper highlights the early stage experimental development in AM mirrors and the future innovative designs which could be applied using AM.
The surface roughness on a diamond-turned AM aluminium (AlSi10Mg) mirror is presented which demonstrates the ability to achieve an average roughness of ~3.6nm root mean square (RMS) measured over a 3 x 3 grid. A Fourier transform of the roughness data is shown which deconvolves the roughness into contributions from the diamond-turning tooling and the AM build layers. In addition, two nickel phosphorus (NiP) coated AlSi10Mg AM mirrors are compared in terms of surface form error; one mirror has a generic sandwich lightweight design at 44% the mass of a solid equivalent, prior to coating and the second mirror was lightweighted further using the finite element analysis tool topology optimisation. The surface form error indicates an improvement in peak-to-valley (PV) from 323nm to 204nm and in RMS from 83nm to 31nm for the generic and optimised lightweighting respectively while demonstrating a weight reduction between the samples of 18%. The paper concludes with a discussion of the breadth of AM design that could be applied to mirror lightweighting in the future, in particular, topology optimisation, tessellating polyhedrons and Voronoi cells are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.