Fourier ptychographic microscopy (FPM) has its strength in tackling the trade-off between resolution and field-of-view of imaging systems by computational methods. Here, we present a time-efficient and physics-based algorithm for FPM image stack reconstruction using implicit neural representation and tensor low-rank approximation. The method is free of any pre-training process and can be easily adapted to various computational microscopes. Compared to the conventional FPM methods for image stack reconstruction, the proposed method can be several times faster than conventional FPM methods on the same graphics processing units (GPU) and significantly reduce data volume for storage. The proposed method has potential applications in digital pathology and its downstream data-driven tasks, and can be beneficial to data collaboration in biological sciences.
Digital refocusing is a key feature of Fourier ptychographic microscopy (FPM). It is currently performed by determining and removing the defocus aberration during the iterative phase retrieval process. We examine the feasibility of digitally refocusing an FPM image by numerically propagating the recovered complex FPM image after the phase retrieval process has been completed – in effect, disentangling the defocus correction process from the iterative phase retrieval process. If feasible, this type of postreconstruction digital refocusing can significantly reduce the FPM computational load and provide a quick and efficient way for refocusing microscopy images on the fly. We report that such an approach is infeasible for large defocus distances because the raw FPM dataset associated with a defocused sample is illconditioned for the FPM’s phase-retrieval process, and it will not output a complex-valued image that corresponds to any physically relevant image wavefront. When the defocus distance is small, the FPM can output an approximately correct image wavefront. However, this wavefront does not contain a global defocus phase term and, therefore, cannot be further focused using the digital refocusing application of a reverse global phase term. In totality, this means that postreconstruction digital refocusing does not serve a meaningful function for any defocus distance. To verify our analysis, we performed a series of experiments, and the results showed that the postreconstruction digital refocusing method is not a viable digital refocusing method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.