In this presentation, I will introduce our recent advances on controlling acoustic wave propagation via spinning media. We will start from a review of the theoretical framework for the scattering problem by a rotation object. Then we will introduce a generalized scattering cancellation theory (SCT) to cloak spinning objects from static observers. In another example, we will study the torque and force a spinning cylindrical column of fluid experiences in evanescent acoustic fields, and show that the resulting discontinuity can scatter sound in unusual ways, e.g., a negative radiation force.
We present here an ultrasensitive optical sensing technique based on the parity-time (PT)-symmetric non-Hermitian metasurfaces. The system is composed of a pair of active and passive metasurfaces with the subtle gain-loss balance. Specifically, these two metasurfaces are made of the photoexcited, nanopatterned 2D material (gain) and the lossy metallic structure (i.e., loss). By suitably tailoring the impedance profiles of the PT-symmetric metasurfaces, the system can exhibit an exotic point where the coherent perfect absorption (CPA) and lasing could occur at the same wavelength, switchable via tuning the complex amplitude of incoming light. At this point, tiny perturbation in the effective optical impedance could drastically vary eigenvalues of the scattering matrix, leading to greatly modulated scattering coefficients and output factor, well beyond conventional optical sensors. Our results show that the proposed PTsymmetric metasurfaces may enable ultrasensitive optical sensors for detecting low-density chemical, gas and molecular agents, as well as refractive-index sensing of a nanofilm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.