Significance: Quantitative measures of blood flow and metabolism are essential for improved assessment of brain health and response to ischemic injury.
Aim: We demonstrate a multimodal technique for measuring the cerebral metabolic rate of oxygen (CMRO2) in the rodent brain on an absolute scale (μM O2 / min).
Approach: We use laser speckle imaging at 809 nm and spatial frequency domain imaging at 655, 730, and 850 nm to obtain spatiotemporal maps of cerebral blood flow, tissue absorption (μa), and tissue scattering (μs ′ ). Knowledge of these three values enables calculation of a characteristic blood flow speed, which in turn is input to a mathematical model with a “zero-flow” boundary condition to calculate absolute CMRO2. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation. With this model, the zero-flow condition occurs during entry into CA.
Results: The CMRO2 values calculated with our method are in good agreement with those measured with magnetic resonance and positron emission tomography by other groups.
Conclusions: Our technique provides a quantitative metric of absolute cerebral metabolism that can potentially be used for comparison between animals and longitudinal monitoring of a single animal over multiple days. Though this report focuses on metabolism in a model of ischemia and reperfusion, this technique can potentially be applied to far broader types of acute brain injury and whole-body pathological occurrences.
We introduce a method for quantitative hyperspectral optical imaging in the spatial frequency domain (hs-SFDI) to image tissue absorption (μa) and reduced scattering (μs′) parameters over a broad spectral range. The hs-SFDI utilizes principles of spatial scanning of the spectrally dispersed output of a supercontinuum laser that is sinusoidally projected onto the tissue using a digital micromirror device. A scientific complementary metal–oxide–semiconductor camera is used for capturing images that are demodulated and analyzed using SFDI computational models. The hs-SFDI performance is validated using tissue-simulating phantoms over a range of μa and μs′ values. Quantitative hs-SFDI images are obtained from an ex-vivo beef sample to spatially resolve concentrations of oxy-, deoxy-, and met-hemoglobin, as well as water and fat fractions. Our results demonstrate that the hs-SFDI can quantitatively image tissue optical properties with 1000 spectral bins in the 580- to 950-nm range over a wide, scalable field of view. With an average accuracy of 6.7% and 12.3% in μa and μs′, respectively, compared to conventional methods, hs-SFDI offers a promising approach for quantitative hyperspectral tissue optical imaging.
Hyperspectral Imaging (HSI) is a growing field in tissue optics due to its ability to collect continuous spectral features of a sample without a contact probe. Spatial Frequency Domain Imaging (SFDI) is a non-contact wide-field spectral imaging technique that is used to quantitatively characterize tissue structure and chromophore concentration. In this study, we designed a Hyperspectral SFDI (H-SFDI) instrument which integrated a supercontinuum laser source to a wavelength tuning optical configuration and a sCMOS camera to extract spatial (Field of View: 2cm×2cm) and broadband spectral features (580nm-950nm). A preliminary experiment was also performed to integrate the hyperspectral projection unit to a compressed single pixel camera and Light Labeling (LiLa) technique.
Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as “single-snapshot” spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies (fx=0 and 0.3 mm−1), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters (μa and μs′) and oxy- and deoxyhemoglobin concentration at ∼14 Hz. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales (Δt) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.
We have developed compressed sensing single pixel spatial frequency domain imaging (cs-SFDI) to characterize tissue optical properties over a wide field of view (35 mm×35 mm) using multiple near-infrared (NIR) wavelengths simultaneously. Our approach takes advantage of the relatively sparse spatial content required for mapping tissue optical properties at length scales comparable to the transport scattering length in tissue (ltr∼1 mm) and the high bandwidth available for spectral encoding using a single-element detector. cs-SFDI recovered absorption (μa) and reduced scattering (μs′) coefficients of a tissue phantom at three NIR wavelengths (660, 850, and 940 nm) within 7.6% and 4.3% of absolute values determined using camera-based SFDI, respectively. These results suggest that cs-SFDI can be developed as a multi- and hyperspectral imaging modality for quantitative, dynamic imaging of tissue optical and physiological properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.