We study a class of receiver-device-independent quantum key distribution protocols based on a prepare-and-measure setup which aims to simplify their implementation. The security of the presented protocols relies on the assumption that the sender, Alice, prepares states that have limited inner-products. Hence, Alice’s device is partially characterized. There is no explicit bound on the Hilbert space dimension required. The receiver’s, Bob’s, device demands no characterization and can be represented as a black-box. The protocols are therefore immune to attacks on Bob’s device, such as blinding attacks. The users can generate a secret key while monitoring the correct functioning of their devices through observed statistics. We report a proof-of-principle demonstration, involving mostly off-the-shelf equipment, as well as a high-efficiency superconducting nanowire detector. A positive key rate is demonstrated over a 4.8 km low-loss optical fiber with finite-key analysis.
High-dimensional entanglement can give rise to stronger forms of nonlocal correlations compared to qubit systems. Beyond being of fundamental interest, this offers significant advantages for quantum information processing. The problem of certifying these stronger correlations, however, remains an important challenge. Here we theoretically formalise and experimentally demonstrate a notion of genuine high-dimensional quantum steering. We show that high-dimensional entanglement combined with judiciously chosen local measurements can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower dimensions. Exploiting the connection between steering and incompatibility of quantum measurements, we derive two-setting inequalities for certifying the presence of genuine high-dimensional steering. We report the experimental violation of these inequalities using macro-pixel photon-pair entanglement certifying genuine high-dimensional steering in dimensions up to 15.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.