A new method for determining surface roughness based on improving the kinematics of the milling cutter movement during micro-cutting has the advantage of the precise spatial position of the micro cutter edge. A change in the components of the speed of movement and rotation during a complex movement of the cutter changes the mechanism of plunging of the cutting edge into the workpiece material. Based on the model developed in this work, the kinematic parameters of the cutter were determined, and new relationships between the cutter geometry and parameters of the technological process were discovered. The revealed new relationships made it possible to determine not only the mechanism of chip formation but also the dimensions of damages to the workpiece surface during plunger cutting.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.