We present the research status of a deformable mirror made of a magnetic liquid whose surface is actuated by a
triangular array of small current carrying coils. We demonstrate that the mirror can correct a 11 μm low order aberrated
wavefront to a residual RMS wavefront error 0.05 μm. Recent developments show that these deformable mirrors can
reach a frequency response of several hundred hertz. A new method for linearizing the response of these mirrors is also
presented.
KEYWORDS: Telescopes, James Webb Space Telescope, Space telescopes, Liquids, Mirrors, Stars, Infrared telescopes, Infrared radiation, Galactic astronomy, Sun
We have studied the feasibility and scientific potential of a 20 - 100 m aperture astronomical telescope at the lunar pole,
with its primary mirror made of spinning liquid at less than 100K. Such a telescope, equipped with imaging and
multiplexed spectroscopic instruments for a deep infrared survey, would be revolutionary in its power to study the
distant universe, including the formation of the first stars and their assembly into galaxies. The LLMT could be used to
follow up discoveries made with the 6 m James Webb Space Telescope, with more detailed images and spectroscopic
studies, as well as to detect objects 100 times fainter, such as the first, high-red shift stars in the early universe. Our
preliminary analysis based on SMART-1 AMIE images shows ridges and crater rims within 0.5° of the North Pole are
illuminated for at least some sun angles during lunar winter. Locations near these points may prove to be ideal for the
LLMT. Lunar dust deposited on the optics or in a thin atmosphere could be problematic. An in-situ site survey appears
necessary to resolve the dust questions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.