The human eye is a complex optical system with multiple elements. It is aspheric, nonsymmetric, and time dependent; yet, overall it has incredible performance. There have been various instruments developed over the years to measure and then to guide treatment to correct for ocular aberrations. As the development of these instruments (and treatments) has progressed, we have sought to correct more difficult cases, which may be more aberrated, time-dependent, or difficult in some other way. To this end, we have developed a new dynamic aberrometer that expands the boundaries of measurement capability with the aim of measuring and treating more difficult cases. This aberrometer has been designed that incorporates high-resolution Shack–Hartmann wavefront sensing, full gradient (spot) corneal topography, dynamic acquisition, and a subjective digital refractometer. This instrument is designed to measure extremely high aberrations and to provide information for treatment in multiple modalities. A small clinical study was conducted with subjects ranging from 23 to 64 years old to evaluate the effectiveness of the dynamic analysis at selecting a refraction. Examples are presented for measurements with keratoconus, irregular corneas, and tear-film irregularity. In the clinical study, young subjects showed an overall +0.27 D reduction in instrument induced myopia using dynamic measurement compared to a snapshot. The instrument has a large dynamic range for measuring subjects with keratoconus and other aberrated corneal conditions. The new instrument is effective at providing information needed for treatment in multiple modalities. The subjective digital refractometer corrects the fixation target for the objectively measured low-order aberrations (defocus and astigmatism). This provides immediate subjective feedback on the objective refraction and, with the ability to manually adjust the refraction parameters, the ability to compare objective and subjective refractions in the same setting.
We have adapted a Shack-Hartmann wavefront sensor (SHWFS) to the measurement of highly aberrated large optics. The experiment uses a concave mirror operating at the radius point with a small lens to re-collimate the light onto the wavefront sensor. It is used to test large (300 mm) fused silica wafers in double pass transmission. The optic under test is placed in the intermediate path near the large return mirror. The aberrations of the large mirror, beam splitter and other optics are subtracted by recording a reference set of focal spot on the SHWFS without the wafer. The wavefront error for some of these wafers is nearly 100 waves, yet we are able to make accurate measurements with the wavefront sensor by selecting a sensor with the appropriate combination of focal length and lenslet diameter. The special sensor that we developed uses a megapixel camera with an arrangement of 100 X 100 lenslets. This sensor could achieve several hundred waves of dynamic range with better than λ/20 accuracy. Additional wafer thickness measurements that were made at NIST with the XCALIBIR interferometer corroborate the SHWFS results.
We have measured the wavefront aberrations of fused silica and silicon microlenses using a Shack-Hartmann wavefront sensor system. The Shack-Hartmann sensor uses a combination of a microlens array and a CCD camera to measure wavefront local tilts with respect to a reference wavefront. Data reduction software then reconstructs the wavefront and expresses it in various forms such as Seidel or Zernike. We measured a series of our custom microlens arrays by placing a fiber source at a distance of one focal length behind the array to create a series of collimated beams from the individual lenslets. We then observed the quality of the collimated beams from single lenslets by using different aperture converters (for different sized lenslets) to expand the individual beams so that they filled a significant portion of the CCD area. For these microlens arrays, the P-V OPD was found to be less than λ/4 and the RMS wavefront error less than λ/20.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.