Superconducting transition-edge sensors (TESs) are highly sensitive detectors and can detect electromagnetic wave radiations from millimeter/submillimeter, optical to 𝑥/γrays, suitable for cosmology, astrophysics, quantum information, and biosensing. In principle, thousands of TESs even more are required to enhance the detection efficiency for large-scale survey. Among other multiplexing schemes, microwave SQUID multiplexer (μMUX), consisting of resonators and RF SQUIDs, has a bandwidth of several GHz, thus multiplexing factor on the order of thousands, more suitable for readout of large TES arrays. We designed and fabricated superconducting coplanar waveguide (CPW) resonators with a high qualityfactor and second-order gradient RF SQUID with two inductive coupling structures respectively. Then, we optimized the critical current density of the Josephson junction and measured the mutual inductance parameters of the second-order gradient structure SQUID, which are consistent with the simulation results. Finally, we fabricated a cryogenic μMUX chip based on RF SQUID and resonator. We discussed the results of the development of μMUX in more detail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.