We study the relation between the discrete-time version of the
flashing ratchet known as Parrondo's games and a compression technique used very recently with thermal ratchets for evaluating the transfer of information -- negentropy -- between the Brownian
particle and the source of fluctuations. We present some results concerning different versions of Parrondo's games showing, for each case, a good qualitative agreement between the gain and the inverse of the entropy.
We extend a recently developed relation between the master equation describing the Parrondo's games and the formalism of the Fokker-Planck equation to the case in which the games are modified with the introduction of "self-transition probabilities." This accounts for the possibility that the capital can neither increase nor decrease during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a discretised version of the equivalent expressions in terms of the solution of the Fokker-Planck equation with multiplicative noise.
We characterize the chaotic dynamics of semiconductor lasers subject to either optical or electro-optical feedback modeled by Lang-Kobayashi and Ikeda equations, respectively. This characterization is relevant for secure optical communications based on chaos encryption. In particular, for each system we compute as function of tunable parameters the Lyapunov spectrum, Kaplan-Yorke dimension and Kolmogorov-Sinai entropy.
We report the observation of synchrony in two unidirectionally coupled (master-slave) model neurons (implemented by electronic circuits) in a noisy environment. Both neurons are subjected to the same random stimulus, and there is a recurrent inhibitory delayed connection in the slave neuron. We observe that synchrony occurs shifted tin time, such that the slave neuron anticipates, i.e., forecasts, the response of the master neuron. By incorporating the effects of unidirectional coupling, delayed feedback and common noise into models of two spiking neurons, we are able to simulate successfully the experimental observations.
We discuss in detail two recently proposed relations between the Parrondo's games and the Fokker-Planck equation describing the flashing ratchet as the overdamped motion of a particle in a potential landscape. In both cases it is possible to relate exactly the probabilities of the games to the potential in which the overdamped particle moves. We will discuss under which conditions current-less potentials correspond to fair games and vie versa.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.