Light sheet fluorescence microscopy (LSFM) is a powerful tool for investigating model organisms including zebrafish. However, due to scattering and refractive index variations within the sample, the resulting image often suffers from low contrast. Structured illumination (SI) has been combined with scanned LSFM to remove out-of-focus and scattered light using square-law detection. Here, we demonstrate that the combination of LSFM with linear reconstruction SI can further increase resolution and contrast in the vertical and axial directions compared to the widely adopted root-mean square reconstruction method while using the same input images. We apply this approach to imaging neural activity in 7-day postfertilization zebrafish larvae. We imaged two-dimensional sections of the zebrafish central nervous system in two colors at an effective frame rate of 7 frames per second.
Zebrafish are an important vertebrate model used to view the mechanisms underlying seizure disorders. Due to their relatively small size and transparency, larval zebrafish are an excellent model through which to view the occurence of seizure-like neural activity in vivo using light sheet fluorescence microscopy (LSFM). Although LSFM possesses good optical sectioning capability and high speed, the resolution and contrast degrade as the imaging plane is moved deeper into the sample due to refractive index variations. We have developed a system that combines a structured illumination light sheet microscope with adaptive optics in the emission path to correct optical aberrations and increase the resolution when imaging deep into the sample. We show that our system can record neural activity fast enough to capture seizure events, and is able to correct optical aberrations throughout the sample.
Light-sheet microscopy is an ideal imaging modality for long-term live imaging in model organisms. However, significant optical aberrations can be present when imaging into an organism that is hundreds of microns or greater in size. To measure and correct optical aberrations, an adaptive optics system must be incorporated into the microscope. Many biological samples lack point sources that can be used as guide stars with conventional Shack-Hartmann wavefront sensors. We have developed a scene-based Shack-Hartmann wavefront sensor for measuring the optical aberrations in a light-sheet microscopy system that does not require a point-source and can measure the aberrations for different parts of the image. The sensor has 280 lenslets inside the pupil, creates an image from each lenslet with a 500 micron field of view and a resolution of 8 microns, and has a resolution for the wavefront gradient of 75 milliradians per lenslet. We demonstrate the system on both fluorescent bead samples and zebrafish embryos.
Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.