Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to
train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual
items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for
wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are
key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural
wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training
scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in
this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the
simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a
volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation,
we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is
composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound
geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a
virtual surgery scene.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.