In order to improve on-product-overlay, the image placement performance of a photomask can be corrected and improved through a multiphoton absorption process. This is possible with an ultra-short pulse laser focused into the glass substrate of the mask, from its backside. For optical masks, this is a well-established technology by using the RegC system from ZEISS. Applying this technology to EUV mask requires a backside transparent coating, still electrically conductive for chucking (according to SEMI SPEC). Using nanometers thick Cr and Ni, their oxide and nitride forms, in different stoichiometric forms if need be, we have developed a backside coating with the required optical transmission, sheet conductance, and mechanical durability, and demonstrated femtosecond correction through it. The proposed backside transparent coating designs can be extended to other metals, such as Ti, Ta, Mo and compounds, such as carbides and borides.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.