The TeraByte InfraRed Delivery (TBIRD) system is a 3U payload on a 6U CubeSat launched in May 2022 which has now demonstrated space to ground links of >1 Terabyte (TB) per pass at a max data rate of 200Gbps. As a CubeSat mission, the development of the TBIRD payload was focused on low SWaP and a “rapid prototyping” approach which accepted higher risks to accelerate the schedule and reduce costs. The optomechanical design process followed standard in-house processes to develop a system that would be robust to LEO environmental loads, with a focus on the stability of the transmit (Tx) and receive (Rx) channel performance metrics. The driving requirement of maintaining 20μrad pointing error between the TX and Rx channels forced specific attention to thermal and mechanical load changes over operational conditions, which drove major design decisions. This paper describes some of engineering challenges overcome and approaches used to make TBIRD a successful program, as well as some of the tradeoffs of rapid prototyping precision optical payloads. TBIRD successfully met and exceeded the total downlink requirements listed above, with a bandwidth of 200Gbps and a total downlink of 4.8TB of information in a single pass.
Since launch in May 2022, the TeraByte Infrared Delivery (TBIRD) payload on a 6U CubeSat has successfully demonstrated 100/200 Gbps laser communications and has transferred >1 TB in a pass from low Earth orbit to ground. To support the narrow downlink beam needed for high rate communications, the payload provides pointing feedback to the host spacecraft to precisely track the ground station throughout the 5-minute pass. This paper presents the on-orbit results of the pointing and tracking system for TBIRD, including initial acquisition and closed-loop tracking performance of 20-35 μrad RMS per axis. Results from on-orbit characterization of the transmit beam are also presented. Measurements of Tx/Rx alignment show stability within 20 μrad, ensuring that tracking on the uplink accurately points the downlink.
Since launch in May 2022, NASA's TeraByte Infrared Delivery (TBIRD) program has successfully demonstrated 100-Gbps and 200-Gbps laser communication downlinks from a 6U CubeSat in low-Earth orbit to a ground station. The TBIRD system operates during 5-minute passes over the ground station and has demonstrated an error-free downlink transfer of > 1 Terabyte (TB) in a single pass. This paper presents an overview of the architecture, link operations, and system performance results to date.
The Terabyte InfraRed Delivery (TBIRD) program will establish a communication link from a nanosatellite in low-Earth orbit to a ground station at burst rates up to 200 Gbps. The TBIRD payload is currently in the process of integrating with the 6-U CubeSat host bus and pre-flight testing has been completed. An overview of the pointing, acquisition, and tracking system for TBIRD is provided as well as a summary of results from pre-flight testing. TBIRD relies on the spacecraft bus to implement fine pointing corrections supplied by its quad sensor at a rate of 10 Hz. The measured accuracy of pointing feedback is about 10 μrad RMS per axis. A custom optical assembly was designed for transmitter/receiver alignment stability which was measured to be within 25 μrad two-axis through environmental testing. With TBIRD feedback in the loop, single axis pointing accuracy of the downlink is predicted to be about 30 μrad RMS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.