The Keck Planet Imager and Characterizer (KPIC), a series of upgrades to the Keck II Adaptive Optics System and Instrument Suite, aims to demonstrate high-resolution spectroscopy of faint exoplanets that are spatially resolved from their host stars. In this paper, we measure KPIC’s sensitivity to companions as a function of separation (i.e., the contrast curve) using on-sky data collected over four years of operation. We show that KPIC is able to reach contrasts of 1.3 × 10−4 at 90 mas and 9.2 × 10−6 at 420 mas separation from the star, and that KPIC can reach planet-level sensitivities at angular separations within the inner working angle of coronagraphic instruments such as GPI and SPHERE. KPIC is also able to achieve more extreme contrasts than other medium-/high-resolution spectrographs that are not as optimized for high-contrast performance. We decompose the KPIC performance budget into individual noise terms and discuss limiting factors. The fringing that results from combining a high-contrast imaging system with a high-resolution spectrograph is identified as an important source of systematic noise. After mitigation and correction, KPIC is able to reach within a factor of 2 of the photon noise limit at separations < 200 mas. At large separations, KPIC is limited by the background noise performance of NIRSPEC.
The Keck Planet Imager and Characterizer (KPIC) combines high contrast imaging with high resolution spectroscopy (R∼35,000 in K band) to study directly imaged exoplanets and brown dwarfs in unprecedented detail. KPIC aims to spectrally characterize substellar companions through measurements of planetary radial velocities, spins, and atmospheric composition. Currently, the dominant source of systematic noise for KPIC is fringing, or oscillations in the spectrum as a function of wavelength. The fringing signal can dominate residuals by up to 10% of the continuum for high S/N exposures, preventing accurate wavelength calibration, retrieval of atmospheric parameters, and detection of planets with flux ratios less than 1% of the host star. To combat contamination from fringing, we first identify its three unique sources and adopt a physically informed model of Fabry-Pérot cavities to apply to post-processed data. We find this strategy can effectively model the fringing in observations of bright stars, reducing the residual systematics caused by fringing by a factor of 2. Next, we wedge two of the transmissive optics internal to KPIC to eliminate two sources of fringing and confirm the third source as the entrance window to the spectrograph. Finally, we apply our previous model of the Fabry-Pérot cavity to new data taken with the wedged optics to reduce the amplitude of the residuals by a factor of 10.
Vortex fiber nulling (VFN) is a single-aperture interferometric technique for detecting and characterizing exoplanets separated from their host star by less than a diffracted beam width. VFN uses a vortex mask and single-mode fiber to selectively reject starlight while coupling off-axis planet light with a simple optical design that can be readily implemented on existing direct imaging instruments that can feed light to an optical fiber. With its axially symmetric coupling region peaking within the inner working angle of conventional coronagraphs, VFN is more efficient at detecting new companions at small separations than conventional direct imaging, thereby increasing the yield of on-going exoplanet search campaigns. We deployed a VFN mode operating in K band (2.0 to 2.5 μm) on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck II Telescope. We present the instrument design of this first on-sky demonstration of VFN and the results from on-sky commissioning, including planet and star throughput measurements and predicted flux-ratio detection limits for close-in companions. The instrument performance is shown to be sufficient for detecting a companion 103 times fainter than a fifth magnitude host star in 1 h at a separation of 50 mas (1.1 λ / D). This makes the instrument capable of efficiently detecting substellar companions around young stars. We also discuss several routes for improvement that will reduce the required integration time for a detection by a factor >3.
The Keck Planet Imager and Characterizer (KPIC) is an instrument at the Keck II telescope that enables high-resolution spectroscopy of directly imaged exoplanets and substellar companions. KPIC uses single-mode fibers to couple the adaptive optics system to Keck’s near-infrared spectrometer (NIRSPEC). However, KPIC’s sensitivity at small separations is limited by the leakage of stellar light into the fiber. Speckle nulling uses a deformable mirror (DM) to destructively interfere starlight with itself, a technique typically used to reduce stellar signal on a focal-plane imaging detector. We present the first on-sky demonstration of speckle nulling through an optical fiber with KPIC, using NIRSPEC to collect exposures that measure speckle phase for quasi-real-time wavefront control while also serving as science data. We repeat iterations of measurement and correction, each using at least five exposures (four with DM probes to determine phase and one unprobed exposure to measure the intensity) and taking about 6 min when using 59.0 s exposures, including NIRSPEC overheads. We show a decrease in the on-sky leaked starlight by a factor of 2.6 to 2.8 in the targeted spectral order, at a spatial separation of 2.0 λ / D in K-band. This corresponds to an estimated factor of 2.6 to 2.8 decrease in the required exposure time to reach a given signal-to-noise ratio, relative to conventional KPIC observations. The performance of speckle nulling is limited by instability in the speckle phase: when the loop is opened, the null-depth degrades by a factor of 2 on the timescale of a single phase measurement, which would limit the suppression that can be achieved. Future work includes exploring gradient-descent methods, which may be faster and thereby able to achieve deeper nulls. In the meantime, the speckle nulling algorithm demonstrated in this work can be used to decrease stellar leakage and improve the signal-to-noise of science observations.
The Keck Planet Imager and Characterizer (KPIC) is a series of upgrades for the Keck II Adaptive Optics system and the NIRSPEC spectrograph to enable diffraction-limited, high-resolution (R>30,000) spectroscopy in the K and L bands. KPIC’s use of single-mode fibers provides a substantial reduction in sky background as well as an extremely stable line-spread function. In this paper we present the results of extensive system-level laboratory testing and characterization of Phase II of the instrument and each of its modes. We also show early on-sky results from the first few months of commissioning with these upgrades along with the next steps for the instrument.
KPIC (Keck Planet Imager and Characterizer) is a series of upgrades to Keck II adaptive optics and the NIR-SPEC spectrograph enabling K-band diffraction-limited high-resolution spectroscopy. KPIC’s single-mode fibers provide a substantial reduction in sky background as well as an extremely stable line-spread function. In this paper we present the on-sky performance of KPIC phase I and lessons learned from calibration and operation of the system, including procedures for maximizing throughput and assessments of long-term line-spread and calibration stability. During phase I, KPIC successfully detected 23 exoplanets and brown dwarfs, with separations from 200 to 3600 mas and K-band magnitudes up to 17.
We present the design requirements and initial design concept for a Fabry-P´erot etalon calibration system for use on the OSIRIS instrument on the Keck I telescope. OSIRIS is an R∼3800 near-infrared integral field spectrograph designed to take images and full spectra over a two-dimensional field. The spectrometer can produce ∼3000 spectra simultaneously, but proper spectral calibration of these data requires a dense grid of spectral lines, which is challenging to achieve with traditional calibration sources. OH lines and arc lines tend to be far apart with large gaps in between at these resolutions. Additionally, the layout of these tightly packed spectra can cause overlap and cross-talk between certain neighboring spectra. Small differences between lenses and thermal instability can also cause fluctuations in the light path, further complicating calibration. We aim to design an etalon that will produce evenly spaced calibration lines at high densities tuned specifically for OSIRIS that can be used to find more accurate wavelength solutions. The etalon lines also provide PSF references that can be used to disentangle confused neighboring spectra. Adding an etalon to the calibration unit on OSIRIS will improve the overall spectral calibration process.
The Keck Planet Imager and Characterizer (KPIC) is a purpose-built instrument to demonstrate technological and instrumental concepts initially developed for the exoplanet direct imaging field. Located downstream of the current Keck II adaptive optic (AO) system, KPIC contains a fiber injection unit (FIU) capable of combining the high-contrast imaging capability of the AOs system with the high dispersion spectroscopy capability of the current Keck high resolution infrared spectrograph (NIRSPEC). Deployed at Keck in September 2018, this instrument has already been used to acquire high-resolution spectra (R > 30,000) of multiple targets of interest. In the near term, it will be used to spectrally characterize known directly imaged exoplanets and low-mass brown dwarf companions visible in the northern hemisphere with a spectral resolution high enough to enable spin and planetary radial velocity measurements as well as Doppler imaging of atmospheric weather phenomena. Here, we present the design of the FIU, the unique calibration procedures needed to operate a single-mode fiber instrument and the system performance.
NIRSPEC is a high-resolution near-infrared echelle spectrograph on the Keck II telescope that was commissioned in 1999 and upgraded in 2018. This recent upgrade was aimed at improving the sensitivity and longevity of the instrument through the replacement of the spectrometer science detector (SPEC) and slit-viewing camera (SCAM). Commissioning began in 2018 December, producing the first on-sky images used in the characterization of the upgraded system. Through the use of photometry and spectroscopy of standard stars and internal calibration lamps, we assess the performance of the upgraded SPEC and SCAM detectors. First, we evaluate the gain, readnoise, dark current, and the charge persistence of the spec detector. We then characterize the newly upgraded spectrometer and the resulting improvements in sensitivity, including spectroscopic zero points, pixel scale, and resolving power across the spectrometer detector field. Finally, for SCAM, we present zero points, pixel scale, and provide a map of the geometric distortion of the camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.