The past decade has witnessed tremendous growth in both interest and available techniques for laboratory X-ray analysis. From the progression of commercially-available micro- and nano-CT scanners to the resolution and sensitivity enhancements of x-ray fluorescence spectrometers, the scientific community is benefiting from a rapid expansion of laboratory-based x-ray techniques.
In our work, we have developed a suite of advanced x-ray instrumentation providing a wide range of enhanced capabilities for specimen characterization. The key enabling technology lies in the X-ray source, which features a microstructured target capable of providing 5-10x higher brightness than conventional sealed-tube x-ray sources and offering power flux densities that rival rotating anode sources. The target array can be custom-designed to incorporate a variety of materials, facilitating fast & easy switching between characteristic emission lines and radiation spectra. This source has been subsequently integrated with state-of-the-art X-ray focusing optics, such as ellipsoidal/paraboloidal capillary lenses and finely-structured Fresnel zone plate imaging objective lenses, and sensitive scintillator-coupled CCD detection systems, opening up new opportunities for advancing laboratory x-ray inspection equipment.
Here, we will describe the system geometries in detail and demonstrate how these new advancements have led us to the development of laboratory micro-XRF, nano-XRM, and XAS instrumentation. We will also briefly introduce the image-centric software workspace, which facilitates novice users to collect data quickly and reliably with minimal training overhead.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.