Imaging features (radiomics) have potential for predicting Triple Negative Breast Cancer and other subtypes using magnetic resonance images (MRI). This work uses 244 images from the Duke-Breast-Cancer-MRI dataset to investigate the complex interplay between radiomics feature stability, with respect to segmentation variability, and prediction results of machine learning models. Our analysis reveals that features demonstrating high stability across different segmentations tend to enhance model performance, whereas unstable features sensitive to small segmentation changes degrade predictive accuracy. This exploration underscores the importance of feature stability in the development of reliable models for breast cancer subtype classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.