Small, highly-mobile "swimming" robots are desired for underwater monitoring operations, including pollution
detection, video mapping and other tasks. Actuator materials of all types are of interest for any application where space
is limited. This constraint certainly applies to the small-scale swimming robot, where multiple small actuators are
needed for forward/backward propulsion, steering and diving/surfacing. A number of previous studies have
demonstrated propulsion of floating objects using IPMC type polymer actuators [1-3] or piezoceramic actuators [4, 5].
Here, we show how propulsion is also possible using a multi-layer polypyrrole bimorph actuator. The actuator is based
on our previously published work showing very fast resonance actuation in polypyrrole bending-type actuators [6].
The bending actuator is a tri-layer structure, in which the gold-PVDF (porous poly(vinylidene fluoride) membrane)
substrate was coated on both sides with polypyrrole layers to form an electrochemical cell. Polypyrrole films on gold
coated PVDF were grown galvanostatically at a current density of 0.10 mA/cm2 for 12 hours from propylene carbonate
(PC) solution containing 0.1 M Li+TFSI-, 0.1 M pyrrole and 1% (w/w) water. The polypyrrole deposited PVDF was
thoroughly rinsed with acetone and stored in 0.1 M Li+TFSI- / PC solution. The edges of the bulk film were trimmed
off and the bending actuators were prepared as rectangular strips typically 2mm wide and 25 mm long.
These actuators gave fast operation in air (to 90 Hz), and were utilised as active flexural joints on the tail fin of a fishshaped
floating "boat". The actuators were attached to a simple truncated shaped fin and the deflection angle was
analysed in both air and liquid for excitation with +/- 1V square wave at a range of frequencies. The mechanical
resonance of the fin was seen to be 4.5 Hz in air and 0.45 Hz in PC, which gave deflection angles of approximately 60°
and 55° respectively.
The boat contained a battery, receiver unit and electronic circuit attached to the actuator fin assembly. Thus, the boat
could be operated by remote control, and by varying the frequency and duty cycle applied to the actuator, the speed and
direction of the boat could be controlled. The boat had a turning circle as small as 15 cm in radius and a maximum
speed of 2m/min when operating with a tail frequency of approximately 0.7 Hz. The efficiency of the flapping tail fin
was analysed and it was seen that operation at this frequency corresponded with a Strouhal number in the optimal range.
The ability of conducting polymer actuators to convert electrical energy into mechanical energy is influenced by many
factors ranging from the actuators physical dimensions to the chemical structure of the conducting polymer. In order to
utilise these actuators to their full potential, it is necessary to explore and quantify the effect of such factors on the
overall actuator performance. The aim of this study is to investigate the effect of various geometrical characteristics such
as the actuator width and thickness on the performance of tri-layer polypyrrole (PPy) actuators operating in air, as
opposed to their predecessors operating in an appropriate electrolyte. For a constant actuator length, the influence of the
actuator width is examined for a uniform thickness geometry. Following this study, the influence of a varied thickness
geometry is examined for the optimised actuator width. The performance of the actuators is quantified by examination of
the force output, tip displacement, efficiency as a function of electrical power and mechanical power, and time constant
for each actuator geometry. It was found that a width of 4mm gave the greatest overall performance without curling
along the actuator length (which occurred with widths above 4mm). This curling phenomenon increased the rigidity of
the actuator, significantly lowering the displacement for low loads. Furthermore, it was discovered that by focussing a
higher thickness of PPy material in certain regions of the actuators length, greater performances in various domains
could be achieved. The experimental results obtained set the foundation for us to synthesize PPy actuators with an
optimised geometry, allowing their performance to reach full potential for many cutting applications.
A copolymer incorporating polyaniline was used as a sensing medium in the construction of a resistance based humidity sensor. Aniline monomer was polymerised in the presence of poly (butyl acrylate / vinyl acetate) and a copolymer containing polyaniline emeraldine salt was obtained. The sensing medium was then developed by redissolving 1-2 w/w% of the resulting polymer residue in dichloromethane to produce a processable polymer blend solution. Some of this polymer residue was also de-doped in a solution of ammonia, and then washed with distilled water until the waste water had a neutral pH. This residue was then redissolved at 1-2 w/w% in dichloromethane to produce a second processable polymer blend this time containing polyaniline emeraldine base. The final sensor design utilised 125μm polyester insulated platinum wire as conducting electrodes that were dip coated in the emeraldine salt copolymer solution and allowed to dry in a desiccator. The sensor was then dip-coated in a protective barrier layer of the emeraldine base copolymer to prevent over-oxidation and/or de-protonation of the emeraldine salt sensing medium under this coating. The sensors had an overall final thickness of less than 150μm and showed high sensitivity to humidity, low resistance, and good reversibility without hysteresis. Sensors were monitored for 2-probe resistance changes when in contact with water. Calibration curves for each sensor were produced to convert the resistance reading to mass uptake of water. Individual sensors were embedded within Aluminium 5083 / Araldite 2015 adhesive joints to monitor mass uptake of water when exposed to marine environments. Correlations between mass uptake of water and joint strength were made.
There are various advantages of such a sensor design. Polymer based thin film humidity sensors have the advantage that the high processability of the material allows for simple fabrication of a range of geometries including smaller sensor designs. The ease of processing gives a low cost sensor, whilst the small size and good mechanical properties gives a robust sensor which has the flexibility to be able to be used in applications where dynamic stresses and strains are encountered. Such sensors may find uses in a number of areas including electronic textiles, food/ electronics packaging and corrosion detection.
A polymer blend incorporating polyaniline (PAn) was used as a sensing medium in the construction of a resistance based humidity sensor. Aniline monomer was polymerised to PAn emeraldine salt (ES) in the presence of poly (butyl acrylate-co-vinyl acetate) and the processable blend was developed by redissolving 1-2 w/w% of the resulting sensing polymer residue in dichloromethane (DCM). Some of this residue was washed in ammonia solution to de-dope the PAn to emeraldine base (EB) to act as a protective layer on the surface of the sensing polymer. This residue was then washed with distilled water until a neutral pH was realised with the waste water, dried and redissolved in DCM at 1-2 w/w% to create a processable blend barrier polymer solution. The final sensor design utilised 125μm polyester insulated platinum wire as conducting electrodes that were dip coated in the PAn ES blend solution and dried in a desiccator. A protective coating was then applied by dip coating in the EB blend solution. The sensors had an overall final thickness of less than 200μm and showed high sensitivity to humidity, low resistance, and good reversibility without hysteresis. The EB protective layer was shown to give more stable and predictable responses to the sensors when placed inside curing epoxies. Polymer based thin film humidity sensors have the advantage that the high processability of the material allows for simple fabrication of a range of geometries including smaller sensor designs. Such sensors may find uses in detecting water content in a number of areas including composite materials, electronic textiles, food/electronics packaging and corrosion detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.