The TOU robotic, compact very high resolution optical spectrograph (R=100,000, 0.38-0.9 microns) has been fully characterized at the 2 meter Automatic Spectroscopy Telescope (AST) at Fairborn Observatory in Arizona during its pilot survey of 12 bright FGK dwarfs in 2015. This instrument has delivered sub m/s Doppler precision for bright reference stars (e.g., 0.7 m/s for Tau Ceti over 60 days) with 5-30 min exposures and 0.7 m/s long-term instrument stability, which is the best performance among all of the known Doppler spectrographs to our knowledge. This performance was achieved by maintaining the instrument in a very high vacuum of 1 micron torr and about 0.5 mK (RMS) long-term temperature stability through an innovative close-loop instrument bench temperature control. It has discovered a 21 Earth-mass planet (P=43days) around a bright K dwarf and confirmed three super-Earth planetary systems, HD 1461, 190360 and HD 219314. This instrument will be used to conduct the Dharma Planet Survey (DPS) in 2016-2019 to monitor ~100 nearby very bright FGK dwarfs (most of them brighter than V=8) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Instrument on-sky performance is summarized.
Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.
Jian Ge, Scott Powell, Bo Zhao, Frank Varosi, Bo Ma, Sirinrat Sithajan, Jian Liu, Rui Li, Nolan Grieves, Sidney Schofield, Louis Avner, Hali Jakeman, William Yoder, Jakob Gittelmacher, Michael Singer, Matthew Muterspaugh, Michael Williamson, J. Maxwell
One of the most astonishing results from the HARPS and Kepler planet surveys is the recent
discovery of close-in super-Earths orbiting more than half of FGKM dwarfs. This new
population of exoplanets represents the most dominant class of planetary systems known to date,
is totally unpredicted by the classical core-accretion disk planet formation model. High cadence
and high precision Doppler spectroscopy is the key to characterize properties of this new
population and constrain planet formation models.
A new robotic, compact high resolution optical spectrograph, called TOU (formerly called
EXPERT-III), was commissioned at the Automatic Spectroscopic Telescope (AST) at Fairborn
Observatory in Arizona in July 2013 and has produced a spectral resolution of about 100,000 and
simultaneous wavelength coverage of 0.38-0.9 μm with a 4kx4k back-illuminated Fairchild CCD
detector. The instrument holds a very high vacuum of 1 micro torr and about 2 mK temperature
stability over a month. The early on-sky RV measurements show that this instrument is
approaching a Doppler precision of 1 m/s (rms) for bright reference stars (such as Tau Ceti) with
5 min exposures and better than 3 m/s (P-V, RMS~1 m/s) daily RV stability before calibration
exposures are applied. A pilot survey of 20 V<9 FGK dwarfs, including known super-Earth
systems and known RV stable stars, is being launched and every star will be observed ~100
times over ~300 days time window between this summer and next spring, following up with a
full survey of ~150 V< 10 FGKM dwarfs in 2015-2017.
In the new era of searching for Earth-like planets, new generation radial velocity (RV) high resolution spectrographs requires ~0.1 m/s Doppler calibration accuracy in the visible band and a similar calibration precision in the near infrared. The patented stable monolithic Michelson interferometer filtered source called the Sine source emerges as a very promising calibration device. This Sine source has the potential of covering the practical working wavelengths (~0.38- 2.5 μm) for Doppler measurements with high resolution optical and near infrared high resolution spectrographs at the ground-based telescopes. The single frame calibration precision can reach < 0.1 m/s for the state of the art spectrographs, and it can be easily designed to match the intrinsic sensitivities of future Doppler instruments. The Sine source also has the great practical advantages in compact (portable) size and low cost. Here we report early results from on-sky calibration of a Sine source measured with two state-of-the-art TOU optical high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared spectrograph (R=50,000, 0.8-1.8 microns) at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The results with the TOU spectrograph monitoring over seven days show that the Sine source has produced ~3 times better calibration precision than the ThAr calibration (RMS = 2.7m/s vs. 7.4m/s) at 0.49-0.62 microns where calibration data have been processed by our preliminary data pipeline and ~1.4 times better than the iodine absorption spectra (RMS=3.6 m/s) at the same wavelength region. As both ThAr and Iodine have reached sub m/s calibration accuracy with existing Doppler instruments (such as HARPS and HIRES), it is likely that the sine source would provide similar improvement once a better data pipeline and an upgraded version of a Sine source are developed. It is totally possible to reach ~0.1 m/s in the optical wavelength region. In addition, this Sine source offers potential very accurate calibration at 0.7-0.9 μm where ThAr lines are totally dominated by strong and saturated Argon lines and the ThAr calibration data are nearly useless. The early measurements with the FIRST near infrared spectrograph show that this Sine source produces very homogenous fringe modulations over 0.8-1.8 μm which can potentially provide better precision than the UrNe lamp for instrument drift measurements.
Jian Ge, Scott Powell, Bo Zhao, Sidney Schofield, Frank Varosi, Craig Warner, Jian Liu, Sirinrat Sithajan, Louis Avner, Hali Jakeman, Jakob Gittelmacher, William Yoder, Matthew Muterspaugh, Michael Williamson, J. Maxwell
High resolution infrared spectroscopy has been a major challenging task to accomplish in astronomy due to the enormous size and cost of IR spectrographs built with traditional gratings. A silicon immersion grating, due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs. Here we report the on-sky performance of the first silicon immersion grating spectrometer, called Florida IR Silicon immersion grating spectromeTer (FIRST), commissioned at the 2-meter Automatic Spectroscopic Telescope (AST) of Fairborn Observatory in Arizona in October 2013. The measured spectral resolution is R=50,000 with a 50 mm diameter spectrograph pupil and a blaze angle of 54.7 degree. The 1.4-1.8 m wavelength region (the Red channel) is completely covered in a single exposure with a 2kx2k H2RG IR array while the 0.8-1.35 μm region is nearly completely covered by the cross-dispersed echelle mode (the Blue channel) at R=50,000 in a single exposure. The instrument is operated in a high vacuum (about 1 micro torr) and cryogenic temperatures (the bench at 189K and the detector at 87K) and with a precise temperature control. It is primarily used for high precision Doppler measurements (~3 m/s) of low mass M dwarf stars for the identification and characterization of extrasolar planets. A plan for a high cadence and high precision survey of habitable super-Earths around ~150 nearby M dwarfs and a major upgrade with integral field unit low resolution spectroscopy are also introduced.
Jian Ge, Bo Zhao, Scott Powell, Ji Wang, Adam Fletcher, Liang Chang, John Groot, Xiaoke Wan, Hali Jakeman, Derek Myers, Elliot Grafer, Jian Liu, Frank Varosi, Sidney Schofield, Alexandria Moore, Maria-Ines van Olphen, Jordan Katz, Rory Barnes
This paper is to report the design and performance of a very high Doppler precision cross-dispersed
echelle spectrograph, EXtremely high Precision ExtrasolaR planet Tracker III (EXPERT-III), as part of a
global Exoplanet Tracker (ET) network. The ET network is designed to hunt low mass planets, especially
habitable rocky planets, around GKM dwarfs. It has an extremely high spectral resolution (EHR) mode of
R=110,000 and a high resolution (HR) mode of R=56,000 and can simultaneously cover 0.38-0.9 μm
with a 4kx4k back-illuminated Fairchild CCD detector with a single exposure. EXPERT-III is optimized
for high throughput by using two-prisms cross-disperser and a large core diameter fiber (2 arcsec on sky,
or 80 μm at f/4) to collect photons from the Kitt Peak National Observatory (KPNO) 2.1m telescope. The
average overall detection efficiency is ~6% from above the atmosphere to the detector for the EHR Mode
and about 11% for the HR mode. The extremely high spectral resolution in a compact design (the
spectrograph dimension, 1.34x0.8x0.48 m) is realized by coupling the single input 80 μm telescope fiber
into four 40 μm fibers and re-arranging the four small core diameter fibers into a linear fiber slit array (a
one-to-four fiber image slicer). EXPERT-III is operated in a vacuum chamber with temperature controlled
to ~2 milli-Kelvin rms for an extended period of time. The radial velocity (RV) drift is controlled to
within 10 meters/second (m/s) over a month. EXPERT-III can reach a photon noise limited RV
measurement precision of ~0.3 m/s for a V=8 mag GKM type dwarf with small rotation (vsini =2 km/s) in
a 15 min exposure. EXPERT-III’s RV measurement uncertainties for bright stars are primarily limited by
the Thorium-Argon (ThAr) calibration source (~0.5 m/s). EXPERT-III will serve as an excellent public
accessible high resolution optical spectroscope facility at the KPNO 2.1m telescope.
We report the system design and predicted performance of the Florida IR Silicon immersion grating
spectromeTer (FIRST). This new generation cryogenic IR spectrograph offers broad-band high resolution
IR spectroscopy with R=72,000 at 1.4-1.8 μm and R=60,000 at 0.8-1.35 μm in a single exposure with a
2kx2k H2RG IR array. It is enabled by a compact design using an extremely high dispersion silicon
immersion grating (SIG) and an R4 echelle with a 50 mm diameter pupil in combination with an Image
Slicer. This instrument is operated in vacuum with temperature precisely controlled to reach long term
stability for high precision radial velocity (RV) measurements of nearby stars, especially M dwarfs and
young stars. The primary technical goal is to reach better than 4 m/s long term RV precision with J<9 M
dwarfs within 30 min exposures. This instrument is scheduled to be commissioned at the Tennessee State
University (TSU) 2-m Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in spring 2013.
FIRST can also be used for observing transiting planets, young stellar objects (YSOs), magnetic fields,
binaries, brown dwarfs (BDs), ISM and stars.
We plan to launch the FIRST NIR M dwarf planet survey in 2014 after FIRST is commissioned at the
AST. This NIR M dwarf survey is the first large-scale NIR high precision Doppler survey dedicated to
detecting and characterizing planets around 215 nearby M dwarfs with J< 10. Our primary science goal is
to look for habitable Super-Earths around the late M dwarfs and also to identify transiting systems for
follow-up observations with JWST to measure the planetary atmospheric compositions and study their
habitability. Our secondary science goal is to detect and characterize a large number of planets around M
dwarfs to understand the statistics of planet populations around these low mass stars and constrain planet
formation and evolution models. Our survey baseline is expected to detect ~30 exoplanets, including 10
Super Earths, within 100 day periods. About half of the Super-Earths are in their habitable zones and one
of them may be a transiting planet. The AST, with its robotic control and ease of switching between
instruments (in seconds), enables great flexibility and efficiency, and enables an optimal strategy, in terms
of schedule and cadence, for this NIR M dwarf planet survey.
We present a new concept for a Doppler imaging remote sensing instrument to track moving objects
within a wide field of view using a compact multi-object Dispersed Fixed-Delay Interferometer (DFDI).
The instrument is a combination of a Michelson type interferometer with a fixed optical delay and a
medium resolution spectrograph. This takes advantage of the strength of the DFDI approach over the
traditional cross-dispersed echelle spectrograph approach for high radial velocity (RV) precision
measurements: multi-object capability, high throughput and a compact design. The combination of a fiber
integral field unit (IFU) with a DFDI instrument allows simultaneous sampling of all of the objects within
the observing field of view (FOV) to provide differential RV measurements of moving objects over
background objects. Due to the three dimensional nature of the IFU spectroscopy the object location and
spectral features can be simultaneously acquired. With the addition of RV signals to the measurements,
this approach allows precise extraction of trajectories and spectral properties of moving objects (such as
space debris and near Earth Objects (NEOs)) through sequential monitoring of moving objects.
Measurement results from moving objects in a lab as well as moving cars in a field using this innovative
approach are reported.
Silicon immersion gratings (SIGs) offer several advantages over the commercial echelle gratings for high
resolution infrared (IR) spectroscopy: 3.4 times the gain in dispersion or ~10 times the reduction in the
instrument volume, a multiplex gain for a large continuous wavelength coverage and low cost. We
present results from lab characterization of a large format SIG of astronomical observation quality. This
SIG, with a 54.74 degree blaze angle (R1.4), 16.1 l/mm groove density, and 50x86 mm2 grating area, was
developed for high resolution IR spectroscopy (R~70,000) in the near IR (1.1-2.5 μm). Its entrance
surface was coated with a single layer of silicon nitride antireflection (AR) coating and its grating surface
was coated with a thin layer of gold to increase its throughput at 1.1-2.5 m. The lab measurements have
shown that the SIG delivered a spectral resolution of R=114,000 at 1.55 m with a lab testing
spectrograph with a 20 mm diameter pupil. The measured peak grating efficiency is 72% at 1.55 m,
which is consistent with the measurements in the optical wavelengths from the grating surface at the air
side. This SIG is being implemented in a new generation cryogenic IR spectrograph, called the Florida IR
Silicon immersion grating spectrometer (FIRST), to offer broad-band high resolution IR spectroscopy
with R=72,000 at 1.4-1.8 um under a typical seeing condition in a single exposure with a 2kx2k H2RG IR
array at the robotically controlled Tennessee State University 2-meter Automatic Spectroscopic Telescope
(AST) at Fairborn Observatory in Arizona. FIRST is designed to provide high precision Doppler
measurements (~4 m/s) for the identification and characterization of extrasolar planets, especially rocky
planets in habitable zones, orbiting low mass M dwarf stars. It will also be used for other high resolution
IR spectroscopic observations of such as young stars, brown dwarfs, magnetic fields, star formation and
interstellar mediums. An optimally designed SIG of the similar size can be used in the Silicon Immersion
Grating Spectrometer (SIGS) to fill the need for high resolution spectroscopy at mid IR to far IR (~25-300 μm) for the NASA SOFIA airborne mission in the future.
Jian Ge, Bo Zhao, John Groot, Liang Chang, Frank Varosi, Xiaoke Wan, Scott Powell, Peng Jiang, Kevin Hanna, Ji Wang, Rohan Pais, Jian Liu, Liming Dou, Sidney Schofield, Shaun McDowell, Erin Costello, Adriana Delgado-Navarro, Scott Fleming, Brian Lee, Sandeep Bollampally, Troy Bosman, Hali Jakeman, Adam Fletcher, Gabriel Marquez
We report design, performance and early results from two of the Extremely High Precision Extrasolar
Planet Tracker Instruments (EXPERT) as part of a global network for hunting for low mass planets in the
next decade. EXPERT is a combination of a thermally compensated monolithic Michelson interferometer
and a cross-dispersed echelle spectrograph for extremely high precision Doppler measurements for nearby
bright stars (e.g., 1m/s for a V=8 solar type star in 15 min exposure). It has R=18,000 with a 72 micron
slit and a simultaneous coverage of 390-694 nm. The commissioning results show that the instrument has
already produced a Doppler precision of about 1 m/s for a solar type star with S/N~100 per pixel. The
instrument has reached ~4 mK (P-V) temperature stability, ~1 mpsi pressure stability over a week and a
total instrument throughput of ~30% at 550 nm from the fiber input to the detector. EXPERT also has a
direct cross-dispersed echelle spectroscopy mode fed with 50 micron fibers. It has spectral resolution of
R=27,000 and a simultaneous wavelength coverage of 390-1000 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.