It often takes one single event to interest teenagers in a topic that will become a passion or a career. It is in this spirit that
the SPIE and OSA Student Chapters at Université Laval created the Photonic Games three years ago, to kindle an
interest in teenagers towards studies and careers in optics. The activity, offered each year to more than a hundred grade
11 students, is divided in two parts. First, we offer a hands-on workshop in their classrooms about reflection, refraction,
dispersion, birefringence and polarization. A few days later, all the students come to the Centre d'optique, photonique et
laser (COPL) at Université Laval for a day of competition where a volunteer physics student accompanies each team of
four students. Challenges are various to promote the qualities that make great scientists: creativity, teamwork,
knowledge, inquisitiveness, self-confidence and perseverance. The first two editions of the Photonic Games have proven
to be beneficial for the students, teachers and volunteers, and we endeavor to improve it as we construct on our
experience with the past editions to fine-tune and improve the Photonic Games concept.
We present a technical processing to fabricate substrates (fused silica) for 3-D photonic bandgap material. The potential surface was modified to improve the colloidal method for nanoparticles assembly. This method allows orientating the growth of the colloidal crystals in a specific way; the crystalline plans growth is parallel to the surface of the substrate, and we can eliminate stacking defects and polycrystallinity. The substrate is obtained with ions beam engraving, according to the following process:
A layer of photoresist is deposited on the substrate; we write two identical holographic gratings on the photoresist with 90° angle;
After the development of photoresist, we obtain a profile which corresponds to one of the crystalline plans of the face centered cubic lattice;
This profile will be transferred on the substrate by RIE (reactive ion etching).
This substrate has many advantages: it is reusable because it is easily cleaned with solvents like acetone; the same substrate will be easy to use in order to make several growth tests and to optimize physicochemical parameters during artificial opals fabrication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.