KEYWORDS: Relays, Mobile devices, Energy efficiency, Unmanned aerial vehicles, Standards development, Optimization (mathematics), Mobile communications
Next-generation (5G & beyond) cellular networks promise much higher throughput and lower latency. However, mobile users experiencing poor channel quality not only suffer low data-rate connections with the base station but also reduce cell’s aggregate throughput and increase overall delay. In this paper, we consider a hybrid cellular and mobile ad hoc Device-to-Device (D2D) network that leverages the advantages of both wide-area cellular coverage and high-speed ad hoc D2D relaying to enhance network performance and scalability. Dedicated relay devices, such as Unmanned Aerial Vehicles (UAVs)/drones, can also be deployed to further improve network connectivity and thus throughput. The base station may send the packets destined for a mobile user with poor cellular channel quality to a proxy mobile device with better cellular channel quality. The proxy mobile device will relay the packets to the destination, thereby significanltly improving network throughput and delay. We formulate the data transmission problem and design an online reinforcement learning-based algorithm to achieve the best transmission performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.