With the rapid development of information technology, natural disaster prevention is growing as a new research field dealing with surveillance systems. To forecast and prevent the damage caused by natural disasters, the development of systems to analyze natural disasters using remote sensing geographic information systems (GIS), and vision sensors has been receiving widespread interest over the last decade. This paper provides an up-to-date review of five different types of natural disasters and their corresponding warning systems using computer vision and pattern recognition techniques such as wildfire smoke and flame detection, water level detection for flood prevention, coastal zone monitoring, and landslide detection. Finally, we conclude with some thoughts about future research directions.
We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.
We present an abandoned luggage detection architecture that consists of an intelligent surveillance system for public places. Detection of abandoned luggage is necessary because unattended or abandoned luggage can be used as a means of terrorist attack, especially for bombs. Our proposed system relies on three modules: moving object detection, object tracking and classification, and event recognition. We focus on abandoned luggage detection. To recognize an abandoned luggage event, we constructed the finite state automaton (FSA), in which each FSA state represents a certain luggage status. The proposed algorithm shows good performance in a real-world environment and also works at real-time speed.
In this paper, we propose a method for detecting unusual human behavior using monocular camera which is not moving. Our system composed of three modules which are moving object detection, tracking, and event recognition. The key part is event recognition module. We define unusual events which are composed of two simple events (drop off luggage, unattended luggage) and two complex events (abandoned luggage and steal luggage). In order to detect the simple event, we construct Bayesian network in each unusual event. We extract evidences using bounding box properties which are the location of moving objects, speed, distance between the person and the other moving object (such as bag), existing time. And then, we use finite state automaton which shows the temporal relation of two simple events to detect complex events. To evaluate the performance, we compare the frame number when an even is triggered with our results and the ground truth. The proposed algorithm showed good results on the real world environment and also worked at real time speed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.