We present the design and testing of spaceflight multiplexing kinetic inductance detector (KID) readout electronics for the PRobe far-Infrared Mission for Astrophysics (PRIMA). PRIMA is a mission proposed to the 2023 NASA Astrophysics Probe Explorer (APEX) Announcement of Opportunity that will answer fundamental questions about the formation of planetary systems, as well as the formation and evolution of stars, supermassive black holes, and dust over cosmic time. The readout electronics for PRIMA must be compatible with operation at Earth-Sun L2 and capable of multiplexing more than 1000 detectors over 2 GHz bandwidth while consuming around 30 W per readout chain. The electronics must also be capable of switching between the two instruments, which have different readout bands,: the hyperspectral imager (PRIMAger, 2.5-5.0 GHz) and the spectrometer (FIRESS, 0.4-2.4 GHz). We present the driving requirements, design, and measured performance of a laboratory brassboard system.
Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency 1/f drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter 50 μm, 175 μm pitch) positioned 0.88 mm from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency (fres) profile is consistent with the target, 139 Hz< fres < 154 Hz in the optically active region (diameter smaller than 150 mm), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be < 15′′, corresponding to an increase in beam width due to beam smearing of < 0.6′′, negligible compared to the beam’s full-width half-maximum of 36′. The median and 16/84th percentile of the wire–mirror separation residual was 0.048+0.013 −0.014 mm in the optically active region, achieving a modulation efficiency ϵ = 96.2−0.4 +0.5% with an estimated bandpass of 34 GHz. The angular velocity of the RHWP was maintained to an accuracy of within 0.005% at the nominal rotation frequency (2.5 Hz). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018.
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 – 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast integration in dark atmospheric windows. The telescope receiver is cooled to ≈ 1.7 K by immersion in a superfluid helium bath and enclosed in a superfluid-tight shell with a meta-material anti-reflection coated silicon window. In addition to the optics and the spectrometer package, the receiver contains the magnetic shielding, the cryogenic segment of the spectrometer readout, and the sub-Kelvin cooling system. A three-stage continuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at 100 mK while a 4He sorption cooler provides a 900 mK thermal intercept for mechanical suspensions and coaxial cables. We present the design of the EXCLAIM receiver and report on the flight-like testing of major receiver components, including the superfluid-tight receiver window and the sub-Kelvin coolers.
The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure “E-mode” (even parity) and “B-mode” (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, and dark matter. CLASS is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (G). In these proceedings, we discuss the updated design and in-lab characterization of new 90 GHz detectors. The new detectors include design changes to the transition-edge sensor (TES) bolometer architecture, which aim to improve stability and optical efficiency. We assembled and tested four new detector wafers, to replace four modules of the W1 focal plane. These detectors were installed into the W1 telescope, and will achieve first light in the austral winter of 2022. We present electrothermal parameters and bandpass measurements from in-lab dark and optical testing. From in-lab dark tests, we also measure a median NEP of 12.3 aW√ s across all four wafers about the CLASS signal band, which is below the expected photon NEP of 32 aW√ s from the field. We therefore expect the new detectors to be photon noise limited.
The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular scale (θ ≳ 1 ◦ ) CMB polarization with the aim of constraining the tensor-to-scalar ratio, r, measuring the optical depth to reionization, τ , to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615±0.019◦ , 0.378±0.005◦ , and 0.266 ± 0.008◦ , respectively. Telescope pointing variations are within a few % of the beam FWHM.
The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this measurement from the ground, CLASS utilizes a front-end, variable-delay polarization modulator on each telescope. Here we report on the improvements in stability afforded by front-end modulation using data across all four CLASS frequencies. Across one month of modulated linear polarization data in 2021, CLASS achieved median knee frequencies of 9.1, 29.1, 20.4, and 36.4 mHz for the 40, 90, 150, and 220 GHz observing bands. The knee frequencies are approximately an order of magnitude lower than achieved via CLASS pair-differencing orthogonal detector pairs without modulation.
Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system laboratory performance of a new 60 cm diameter reflective half-wave plate (RHWP) polarization modulator. The wave plate consists of a wire array situated in front of a flat mirror. Using 50 μm diameter wires with 175 μm spacing, the wave plate will be suitable for operation in the millimeter wavelength range with flatness of the wires and parallelism to the mirror held to a small fraction of a wavelength. The presented design targets the 77–108 GHz range. Modulation is performed by a rotation of the wave plate with a custom rotary drive utilizing an actively controlled servo motor.
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ∼ 70% of the sky at frequency bands centered near 40 GHz, 90 GHz, 150 GHz, and 220 GHz from the Atacama desert of northern Chile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observations, monitor the status of the instruments and observations, create archival data packages, and transfer data packages to North America for analysis. The computer and network architecture of the CLASS observing site is also briefly discussed. This software and architecture has been in use since 2016, operating the telescopes day and night throughout the year, and has proven successful in fulfilling its design goals.
The Cosmology Large Angular Scale Surveyor consists of four instruments performing a CMB polarization survey. Currently, the 40 GHz and first 90 GHz instruments are deployed and observing, with the second 90 GHz and a multichroic 150/220 GHz instrument to follow. The receiver is a central component of each instrument's design and functionality. This paper describes the CLASS receiver design, using the first 90 GHz receiver as a primary reference. Cryogenic cooling and filters maintain a cold, low-noise environment for the detectors. We have achieved receiver detector temperatures below 50mK in the 40 GHz instrument for 85% of the initial 1.5 years of operation, and observed in-band efficiency that is consistent with pre-deployment estimates. At 90 GHz, less than 26% of in-band power is lost to the filters and lenses in the receiver, allowing for high optical efficiency. We discuss the mounting scheme for the filters and lenses, the alignment of the cold optics and detectors, stray light control, and magnetic shielding.
We present here a study of the use of the SiAl alloy CE7 for the packaging of silicon devices at cryogenic temperatures. We report on the development of baseplates and feedhorn arrays for millimeter wave bolometric detectors for astrophysics. Existing interfaces to such detectors are typically made either of metals, which are easy to machine but mismatched to the thermal contraction profile of Si devices, or of silicon, which avoids the mismatch but is difficult to directly machine. CE7 exhibits properties of both Si and Al, which makes it uniquely well suited for this application.
We measure CE7 to a) superconduct below a critical transition temperature, Tc, ~1.2 K, b) have a thermal contraction profile much closer to Si than metals, which enables simple mating, and c) have a low thermal conductivity which can be improved by Au-plating. Our investigations also demonstrate that CE7 can be machined well enough to fabricate small structures, such as #0-80 threaded holes, to tight tolerances (~25 μm) in contrast with pure silicon and similar substrates. We have fabricated CE7 baseplates being deployed in the 93 GHz polarimetric focal planes used in the Cosmology Large Angular Scale Surveyor (CLASS).1 We also report on the development of smooth-walled feedhorn arrays made of CE7 that will be used in a focal plane of dichroic 150/220 GHz detectors for the CLASS High-Frequency camera.
The search for inflationary primordial gravitational waves and the measurement of the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subject to instrumental and atmospheric 1=f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.
Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a movable flat mirror. Varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The CLASS telescopes have VPMs as the first optical element from the sky; this simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization further along in the optical path.
The CLASS VPM wire grids use 50 μm copper-plated tungsten wire with a 160μm spacing across a 60 cm clear aperture. The mirror is mounted on a flexure system with one degree of translational freedom, enabling the required mirror motion while maintaining excellent parallelism with respect to the wire grid. The wire grids and mirrors are held parallel to each other to better than 80 μm, and the wire grids have RMS flatness errors below 50 μm across the 60 cm aperture. The Q-band CLASS VPM was the first VPM to begin observing the CMB full time, starting in the Spring of 2016. The first W-band CLASS VPM was installed in the Spring of 2018.
The Cosmology Large Angular Scale Surveyor (CLASS) aims to detect and characterize the primordial Bmode signal and make a sample-variance-limited measurement of the optical depth to reionization. CLASS is a ground-based, multi-frequency microwave polarimeter that surveys 70% of the microwave sky every day from the Atacama Desert. The focal plane detector arrays of all CLASS telescopes contain smooth-walled feedhorns that couple to transition-edge sensor (TES) bolometers through symmetric planar orthomode transducer (OMT) antennas. These low noise polarization-sensitive detector arrays are fabricated on mono-crystalline silicon wafers to maintain TES uniformity and optimize optical efficiency throughout the wafer. In this paper, we discuss the design and characterization of the first CLASS 93 GHz detector array. We measure the dark parameters, bandpass, and noise spectra of the detectors and report that the detectors are photon-noise limited. With current array yield of 82%, we estimate the total array noise-equivalent power (NEP) to be 2.1 aW√s.
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.