The filter wheel (FW) assembly (FWA), developed by the CBK Institute, is one of the critical subsystems of the wide field imager (WFI) instrument on board the Advanced Telescope for High Energy Astrophysics—mission of the ESA Cosmic Vision 2015-25 space science program (launch scheduled around 2035). The instrument has to collect soft x-rays with very high quantum efficiency, thus WFI requires extremely thin optical blocking filter (OBF). Due to its thickness (∼150 nm) and large area (∼170 mm × 170 mm) needed to achieve a 40 ′ × 40 ′ instrument field of view, the filter is extremely vulnerable to acoustic loads generated during Ariane 6 rocket launch. On the other side, FW mechanism has to provide high overall reliability, so it is more favourable to launch the instrument in atmospheric pressure (without vacuum enclosure for filter protection). Design efforts of the FW subsystem were focused on two issues: providing maximal possible sound pressure level suppression and smallest possible differential pressure across the OBF, which should prevent filters from damaging. We describe the design of a reconfigurable acoustic-demonstrator model (DM) of WFI FWA created for purposes of acoustic testing. Also, the acoustic test campaign is described: test methodology, test criteria, and results discussion and its implication on future FWA design. In general, tests conducted with the FWA DM showed that current design of WFI is feasible and the project can be continued without introducing a vacuum enclosure, which would significantly increase system complexity and mass.
ESA JUICE Mission JUpiter ICy moons Explorer which is planned for launch in 2022 would be consisted of 11 science instruments. For one of them, SWI (Submillimetre Wave Instrument), the dedicated Radiator was designed due to requirement for low operational temperature of crucial instrument subsystem. Located outside of the spacecraft and facing the Deep Space; exposed to highly radiative environment and high temperature gradients between Earth, Venus and Jupiter orbits; robust against launch vibrations; light-as-possible and optimized to provide maximal thermal efficiency. The design solution, which would successfully fulfill these often counteracting requirements occurred to be non-trivial. Presented design approach shows the balanced and optimized response for initial requirements, including the description of thermal performance modelling using ESATAN and structural FEM analysis calculated in NASTRAN.
The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40’x40’ field of view, simultaneously with spectrally and time resolved photon counting. The WFI detector is also sensitive to UV/Vis photons, with an electron-hole pair production efficiency in the UV/VIS larger than that for X-ray photons. Optically generated photo-electrons may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of X-ray transparent optical blocking filters (OBFs) are needed to allow the observation of X-ray sources that present a UV/Vis bright counterpart. The OBFs design is challenging since one of the two required filters is quite large (~ 160 mm × 160 mm), very thin (< 200 nm), and shall survive the mechanical load during the launch. In this paper, we review the main results of modeling and characterization tests of OBF partially representative samples, performed during the phase A study, to identify the suitable materials, optimize the design, prove that the filters can be launched in atmospheric pressure, and thus demonstrate that the chosen technology can reach the proper technical readiness before mission adoption.
ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray transparency, filters must be very thin, from a few tens to few hundreds of nm, on the other hand, they must be strong enough to survive the severe launch stresses. In particular, the WFI OBF, being launched in atmospheric pressure, shall also survive acoustic loads. In this paper, we present a review of the structural modeling performed to assist the ATHENA filters design, the preliminary results from vibration and acoustic tests, and we discuss future activities necessary to consolidate the filters design, before the preliminary requirement review of the ATHENA instruments, scheduled before the end of 2018.
The planned filter and calibration wheel for the Wide Field Imager (WFI) instrument on Athena is presented. With four selectable positions it provides the necessary functions, in particular an UV/VIS blocking filter for the WFI detectors and a calibration source. Challenges for the filter wheel design are the large volume and mass of the subsystem, the implementation of a robust mechanism and the protection of the ultra-thin filter with an area of 160 mm square. This paper describes performed trade-offs based on simulation results and describes the baseline design in detail. Reliable solutions are envisaged for the conceptual design of the filter and calibration wheel. Four different variant with different position of the filter are presented. Risk mitigation and the compliance to design requirements are demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.