The InfraRed Doppler (IRD) instrument is the Subaru telescope’s high-resolution (R > 70,000) spectrograph covering wavelengths from 1000 to 1700 nm. A laser frequency comb (LFC) spectrum simultaneously obtained with an object spectrum calibrates wavelength shifts caused by instrumental instability. We originally developed IRD to carry out precision radial velocity (RV) measurements at near-infrared wavelengths. The wide wavelength coverage of IRD, and the large mirror (8.2 m) of the Subaru Telescope enables IRD to provide the best sensitivities to detect a planet orbiting a cool M-type star. The first science operation of IRD was conducted in 2018 and the large strategic blind survey for planets orbiting cool M-type stars started in 2019. Since then, there have been many observations not only for exoplanet category but also for stellar physics, Galaxy, and high-energy astrophysics. IRD spectroscopy allowed for characterizing exoplanet atmospheres by measuring OH emissions, He absorptions, and spin-orbit obliquities. The IRD survey discovered a super-Earth in orbit near a habitable zone of Ross 508. The IRD RV measurements for many systems that host transiting planets, including TOI-2285 b and Gliese 12 b, helped confirm those and determine or constrain their masses. Using REACH, IRD can be combined with the extreme adaptive optics SCExAO, enabling the use of a single-mode fiber and characterizations of faint sub-stellar companions orbiting bright stars. In this proceeding paper, we review and highlight the scientific results achieved by the IRD observations.
An exoplanet survey with a near-infrared Doppler (IRD) instrument focused on mid-to-late M-type dwarfs began in February 2019 within the framework of the Subaru Strategic Program. Because mid-to-late M-type dwarfs are brighter in the infrared region than in the visible region, a laser frequency comb (LFC) system was developed as a wavelength reference, covering the near-infrared region from 970 to 1750 nm. To stabilize the comb image on the spectrometer, the original 12.5 GHz comb generated using highly nonlinear fibers was injected into the spectrometer after optical processing, including spectral shaping, depolarization, and mode scrambling. An inline fiber module was introduced to enable any optical system configuration for the optical processor. This fiber-optic configuration in the LFC system allows for long-term stability and easy repair. Moreover, simple remote control of the LFC system using an interactive program enabled LFC generation in approximately 5 min, excluding warm-up time. The observations using the IRD instrument over 4 years have proven that our LFC system is practical and stable. The LFC system operated stably without major problems during this period, helping to maintain a high radial velocity accuracy.
A near-infrared radial velocity (RV) survey focusing on the late-M dwarfs started in February 2019 within the framework of the Subaru Strategy Program (SSP). The InfraRed Doppler (IRD) instrument mainly consists of a highresolution spectrometer and a laser frequency comb (LFC) system as a wavelength reference. Late-M dwarfs emit most of their energy in the near-infrared rather than in the visible. Therefore, to cover the bright absorption lines of M dwarfs, LFC provides a broadband spectrum from 970 nm to 1750 nm with a mode spacing of 12.5 GHz. It has advantages such as simple and robust frequency stabilization, an all-fiber optic configuration, and being observer friendly. The original comb spectrum just generated from highly nonlinear fibers undergoes optical processing such as spectral shaping, depolarization, and mode scrambling in multimode fiber utilization before it is input to the spectrometer. Using the IRD instrument, the IRD-SSP has made more than 100 nights of observations over the last three years. The LFC system operated stably without major trouble during this period, helping to maintain high RV accuracy. Despite the lack of direct maintenance for two and a half years due to Covid-19, the system has continued to operate without any interruption to the observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.