We report on experimental realization of different metal-insulator geometries that are used as plasmonic waveguides
guiding electromagnetic radiation along metal-dielectric interfaces via excitation of surface plasmon polaritons (SPPs).
Three configurations are considered: metal strips, symmetric nanowires and nanowire pairs embedded in a dielectric, and
metal V-shaped grooves. Planar plasmonic waveguides based on nm-thin and μm-wide gold strips embedded in a
polymer that support propagation of long-range SPPs are shown to constitute an alternative for integrated optical
circuits. Using uniform and thickness-modulated gold strips different waveguide components including reflecting
gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are
shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides based on metal
V-grooves that offer subwavelength confinement are also considered. We focus on recent advances in manufacturing of
nanostructured metal strips and metal V-grooves using combined UV, electron-beam and nanoimprint lithography.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.