We investigate the integration of Al nanoparticle arrays into the anti-reflection coatings (ARCs) of commercial triple-junction GaInP/ In0.01GaAs /Ge space solar cells, and study their effect on the radiation-hardness. It is postulated that the presence of nanoparticle arrays can improve the radiation-hardness of space solar cells by scattering incident photons obliquely into the device, causing charger carriers to be photogenerated closer to the junction, and hence improving the carrier collection efficiency in the irradiation-damaged subcells. The Al nanoparticle arrays were successfully embedded in the ARCs, over large areas, using nanoimprint lithography: a replication technique with the potential for high throughput and low cost. Irradiation testing showed that the presence of the nanoparticles did not improve the radiation-hardness of the solar cells, so the investigated structure has proven not to be ideal in this context. Nonetheless, this paper reports on the details and results of the nanofabrication to inform about future integration of alternative light-scattering structures into multi-junction solar cells or other optoelectronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.