We have planned the Lunar observatory project, TSUKUYOMI aiming to meter-wavelength observations on the Moon. One of the scientific objectives is to observe the 21 cm global signal from the Dark Ages using the 1–50 MHz observing frequency range. The receiving system must have a noise temperature sufficiently lower than the foreground noise and also requires the flat bandpass response. To cover the ultra-wide bandwidth, an electrically-short dipole antenna and a preamplifier with high input impedance will be employed. This paper focuses on a feasibility study of the system performance. The environment of and around the observation site, such as the lunar surface dielectric constant and the antenna height from the ground plane, affects the sensitivity because it alters important parameters such as the antenna beam pattern and impedance. The investigation results of relationship between the surrounding environment and the sensitivity will be also reported.
Aim to Japan's participation in the Artemis program in the 2030s in mind, we pursue the feasibility studies of lunar telescope, including astronomical observations. Focusing on the meter-wavelength observations (observing frequency of lower than 50MHz), which cannot be observed in the harsh environments on the ground from the Earth, including the ionosphere and radio frequency interference, we have reported on conceptual design based on the results of our feasibility studies in Japan. The main scientific objectives we have studied so far are broadly covering the following three areas: astronomy and astrophysics, planetary science, and lunar science. In astrophysics, the observing frequency range of 1- 50MHz gives us an opportunity to observe the 21 cm global signal (spatial average temperature) from the Dark Ages, which is determined purely by cosmology and is not affected by first-generation star formation and cosmic reionization. In astronomy, it provides the images of the Milky Way galaxy at meter wavelengths. In planetary science, it will be possible to study the environments of exoplanets through 1) radio waves from auroras on gas giant exoplanets like Jupiter and 2) stellar radio-wave bursts. In lunar science, it has the potential to observationally study the lunar ionosphere, subsurface structure, and dust environment. At present, we plan the meter-wavelength interferometric array as lunar telescope, including the single-dish observations. In this paper, focused on the scientific requirements from cosmology, we will report the design concepts of Japanese lunar telescope project, including the advanced feasibility studies of antenna, receiver, signal chain and spectrometer that are compared as other studies in US, China and Europe. We named this project TSUKUYOMI.
Low-frequency radio observations below 50 MHz on the Moon are not subject to some radio interference, allowing for the study before the formation of the first star, which is impossible from the Earth. Our lunar observatory project, TSUKUYOMI, aims to observe the 21cm global signal from the Dark Ages, requiring wideband observations covering 1-50MHz to spot absorption features of ∼ 40 mK relative to the CMB. Considering the radiation from the Milky Way, which is the main foreground noise source and the reception characteristics of the short dipole antenna, a pre–amplifier with a noise lower than 2nV/√ Hz and an input capacitance of 25pF will result in a system noise well below foreground noise over the entire bandwidth and a roughly flat wideband response. Managing the input/floating capacitance and using a lumped constant circuit is crucial for wideband performance. This paper outlines the wideband system and delves into the system performance requirements.
VLBI Exploration of Radio Astrometry (VERA) is a VLBI facility operated by the National Astronomical Observatory of Japan. It comprises four 20 m radio telescopes located across the country. VLBI observations at 86 GHz allow us to explore the jet base of nearby active galactic nuclei. In recent years, the development of the 86 GHz receiver systems at the East Asia VLBI Network (EAVN) has started. Currently, only three Korea VLBI Network (KVN) antennas provide 86 GHz VLBI capability in the member stations of EAVN. The participation of VERA in the 86 GHz VLBI observations will boost resolution, sensitivity, and dynamic range. Therefore, we are developing a new 86 GHz low noise receiver system to be installed at VERA Mizusawa and Ishigaki stations. We are considering a cooled circular polarization receiver covering a wide frequency range of 67−116 GHz with the capability of cooling HEMT amplifiers. We are developing a room temperature 2 side band (2SB) system for down-converting signals in the 67−116 GHz band. Recently developed room-temperature mixers with an IF frequency over 25 GHz could cover most of the 67−116 GHz RF signals in a single observation. In this poster, we will discuss the development progress of the 2SB receiver and the design status of the cooling Dewar.
We have been developing a wideband heterodyne receiver for simultaneous observations in isotopologue CO lines of J = 2–1 and J = 3–2 transitions with dual-polarization. To achieve these simultaneous observations, a wideband frequency separation system was required in the radio frequency circuit because the intermediate frequency range of the superconductor-insulator-superconductor mixer is narrower than the frequency range of the CO lines from J = 2–1 to J = 3–2. As the frequency separation system, a waveguide multiplexer that connects three types of diplexers was applied. The prototype multiplexer was already developed and installed in the 1.85-m radio telescope. Then, we succeeded in commissioning observations simultaneously in 230 and 345 GHz bands with single polarization. We are currently working on improving the multiplexer and developing a 90° differential phase shifter and a wideband orthomode transducer (OMT). The 90° differential phase shifter and OMT can be combined to operate as a circular polarizer. We are planning to realize observations of both linearly and circularly polarized waves by using the OMT and circular polarizer, respectively. A part of this development can contribute to the future development of Atacama Large millimeter/submillimeter Array and Very Long Baseline Interferometry telescopes. In this paper, we describe the development of the prototype wideband receiver and the development status of the OMT, circular polarizer, and a new multiplexer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.