A novel special fiber fabrication method based on a common single mode fiber (SMF) for dual-parameters measurement has been proposed and experimentally demonstrated. The fabrication setup is based on a three dimensional electric displacement platform which can realize the function of twisting and tapering at the same time. The proposed novel structure simultaneously undergoes the aforementioned two processes. Then a twisted-tapering fiber structure is formed. There are two dominant resonant wavelengths in the spectrum. Thus, simultaneous measurement for strain and temperature can be achieved. The following result shows that the strain measurement can be achieved by intensity demodulation, with the sensitivity of -0.01565 dB/με and 0.00705 dB/με corresponding to the dip1 and dip2, respectively. Therefore, the total sensitivity of the strain is 0.0227 dB/με. Moreover, the cross impacts of the wavelength shift are - 0.772 pm/με and 0.895 pm/με. Similarly, the wavelength demodulation is selected to temperature measurement. The temperature sensitivity of 50.53pm/°C and 45.12pm/°C are obtained. The cross sensitivity of the intensity variation are 0.04058dB/°C and 0.02031 dB/°C. As a result, the dual-parameters can be described to a cross matrix of the sensitivity value. The proposed sensor has a great potential for engineering applications due to its compact structure, simple manufacture and low cost.
A highly sensitive twist sensor without temperature cross sensitivity based on tapered single mode-thin core-single mode fiber offset structure is proposed and experimentally demonstrated. The two parameters mentioned above can be measured simultaneously without cross sensitivity. The twist sensitivity of 0.12dB/° is achieved by tracking power variation of the resonant wavelength, and the wavelength shift of the spectrum is ±0.01nm. The temperature sensitivity of 0.12nm/°C can be achieved by wavelength demodulation, and the power fluctuation of the spectrum is ±0.015dB. Therefore, the twist and temperature can be detected by the power and wavelength demodulation method, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.