Automated medical image processing and analysis offer a powerful tool for medical diagnosis. In this work, a decision-tree based white blood cell (WBC) classification scheme for peripheral blood images is developed. Based on the sufficient analysis on the characteristics of white blood cells, 10 efficient features are extracted, including size, shape, intensity and color, and a classification scheme based on decision-tree is designed to classify 6 different types of normal white blood cells. Especially, an efficient approach to separate two types of neutrophil is presented. The presented scheme is tested on 59 WBCs coming from 3 sets of blood images, which are obtained under different dying and imaging conditions. Results show classification accuracy above 96%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.