Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform, fostering the exciting field of flat optics. Traditional metasurfaces are achieved by arranging a layout of static meta-atoms to imprint a desired operation on the impinging wavefront, but their functionality cannot be altered. Reconfigurability and programmability of metasurfaces are the next important step to broaden their impact, adding customized on-demand functionality in which each meta-atom can be individually reprogrammed. We demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level, which can implement continuous Pancharatnam–Berry phase control of circularly polarized microwaves. As the proof-of-concept experiments, we demonstrate metalensing, focused vortex beam generation, and holographic imaging in the same metasurface template, exhibiting versatility and superior performance. Such dynamic control of electromagnetic waves using a single, low-cost metasurface paves an avenue towards practical applications, driving the field of reprogrammable intelligent metasurfaces for a variety of applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.