Metasurface is a kind of functional device based on assemblies of subwavelength structures, which can perform multiple operations on light modulation, such as phase, amplitude and polarization modulation. However, due to the difficulty of design and high processing cost of three-dimensional nano-structure, it is far from practical applications. In this paper, we propose a method to replicate the metasurface structure at room temperature using Nanoimprint Lithography (NIL), the process including: use electron beam lithography to fabricate metasurface structure as the master for NIL; transfer the inverse structure of metasurface onto the PET substrate as the working NIL stamp; imprint the metasurface structure into proper UV resist as the metasurface holographic substrate. The imprinted metasurface structure was characterized by SEM, and the image information recorded inside the metasurface structure was reproduced by laser illumination, which proved the effectiveness of the proposed method.
Automatic optimization of diffractive structures is of great interest and has potential applications in see-through near-eye displays. Here, we propose an approach of on-demand design of diffractive elements using the physics-driven topological optimization. The topology is iteratively optimized according to the added constrains in dispersion and angle uniformity. The proposed model provides an effective way for the design of complex electromagnetic components that are essentially irregular and out of the box of human’s designing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.