Organic solid thin films of PMMA and surfactant-treated salmon deoxyribonucleic acid (DNA) were used as
host materials to dope sulforhodamine (SRh) laser dye. Amplified Spontaneous Emission (ASE) was observed from the
dye-doped thin films pumped by frequency-doubled Nd:YAG laser, with DNA host showed a lower ASE pump
threshold. Distributed feedback (DFB) laser structures were fabricated on both dye-doped thin films for the 2nd order
emission of SRh at 650 nm. Stimulated Emission (Lasing) was obtained by pumping with a doubled Nd:YAG laser at
532 nm. The DNA DFB devices lasing threshold was 30&mgr;J/cm2 or 3.75kW/cm2. The emission linewidth decreased from
~ 30 nm in the ASE mode to < 0.4 nm in the lasing mode. The slope efficiency of the laser emission was ~ 1.2%. Similar
emission linewidth change was observed in PMMA DFB devices while the lasing threshold was 53 &mgr;J/cm2 or
6.63kW/cm2 with a slope efficiency of ~0.63%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.