Crowd counting has been a popular research topic in the field of computer vision due to the variation of human head scales and the interference of background noise. Some existing methods use multi-level feature fusion to solve scale variation, but the problem of background noise interference may be more serious due to the involvement of shallow features in the feature fusion process. In this paper, we propose a Multilevel Information Sharing Network based on Residual Attention(RA-MISNet) to solve this problem. The RA-MISNet consists of a feature extraction component, an information sharing module and a residual attention density map estimator. On the basis of solving the multi-scale problem, the residual attention mechanism is adopted by our proposed method to refine the population distribution information in sharing features at all levels, which can reduce the interference of complex texture background on density map regression. Furthermore, owing to the severe label noise interference problem in high-density crowd areas, we design a Regional Multi-level Segmentation Loss (RMS Loss) to divide the multi-level density regions with different label noise rates in a single crowd image and apply the corresponding granularity supervision constraints for each density level region. Extensive experiments on three crowd counting datasets (ShanghaiTech, UCF CC 50, UCF-QNRF) demonstrate the effectiveness and superiority of the proposed methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.